Contents: The department’s course description reads:

Euclidean, non-Euclidean, and projective geometries from an axiomatic point of view.

We will discuss the axiomatic systems for geometry that the textbook discusses, but also discuss axiomatics in general, and their role in modern mathematics. This is a theoretical course, and you are expected to produce proofs on your own as required.

Grading: Based on homework. Some routine problems will be assigned frequently, to be turned in from one lecture to the next, and some more challenging problems will be posted periodically, and more time will be provided for those. No extensions will be granted, and no late work will be accepted. I expect there will be no exams, but if we see the need, you will be informed reasonably in advance. Even if you collaborate with others and work in groups, the work you turn in should be written on your own. Give credit as appropriate: Make sure to list all books, websites, and people you collaborated with or consulted while working on the homework. If relevant, indicate what software packages you used, and include any programs you may have written, or additional data. Failure to provide credit or to indicate these sources will affect your grade.

I may ask you to meet with me to discuss details of homework sets, and I suggest that before you turn in your work, you make a copy, so you can consult it if needed.

Occasionally, I post links to supplementary material on Google+ and Twitter.

Like this:

LikeLoading...

Related

This entry was posted on Monday, January 12th, 2015 at 11:12 am and is filed under 311: Foundations of geometry. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

I am looking for references discussing two inequalities that come up in the study of the dynamics of Newton's method on real-valued polynomials (in one variable). The inequalities are fairly different, but it seems to make sense to ask about both of them in the same post. Most of the details below are fairly elementary, they are mostly included for comp […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Not necessarily. That $\mathfrak m$ is consistently singular is proved in MR0947850 (89m:03045) Kunen, Kenneth. Where $\mathsf{MA}$ first fails. J. Symbolic Logic 53(2), (1988), 429–433. There, Ken shows that $\mathfrak{m}$ can be singular of cofinality $\omega_1$. (Both links above are behind paywalls.)

Ignas: It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here. […]

Following Tomas's suggestion, I am posting this as an answer: I encountered this problem while directing a Master's thesis two years ago, and again (in a different setting) with another thesis last year. I seem to recall that I somehow got to this while reading slides of a talk by Paul Pollack. Anyway, I like to deduce the results asked in the prob […]

This is a beautiful and truly fundamental result, and so there are several good quality presentations. Try MR1321144. Kanamori, Akihiro. The higher infinite. Large cardinals in set theory from their beginnings. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1994. xxiv+536 pp. ISBN: 3-540-57071-3, or any of the newer editions (the 2003 second ed […]

Given any field automorphism of $\mathbb C$, the rational numbers are fixed. In fact, any number that is explicitly definable in $\mathbb C$ (in the first order language of fields) is fixed. (Actually, this means that we can only ensure that the rationals are fixed, I expand on this below.) Any construction of a wild automorphism uses the axiom of choice. Se […]

The Milner-Rado paradox is only a paradox in the traditional sense of the word: there are no inconsistencies here, but rather the result is (perhaps naively) seen as counter-intuitive. There are two reasons here: First, if $\alpha=\bigcup_{n

The question immediately reminded me of this. Here is an argument following the same basic idea at the beginning of that argument: First, consider $B=\{x\in A\mid A\cap(-\infty,x]$ is countable$\}$, and note that $B$ itself is countable: The point is that if $x\in B$ then $A\cap(-\infty,x]\subseteq B$. Now, if $B\ne\emptyset$, let $t=\sup B$, fix an increasi […]