Contents: The department’s course description reads:

Euclidean, non-Euclidean, and projective geometries from an axiomatic point of view.

We will discuss the axiomatic systems for geometry that the textbook discusses, but also discuss axiomatics in general, and their role in modern mathematics. This is a theoretical course, and you are expected to produce proofs on your own as required.

Grading: Based on homework. Some routine problems will be assigned frequently, to be turned in from one lecture to the next, and some more challenging problems will be posted periodically, and more time will be provided for those. No extensions will be granted, and no late work will be accepted. I expect there will be no exams, but if we see the need, you will be informed reasonably in advance. Even if you collaborate with others and work in groups, the work you turn in should be written on your own. Give credit as appropriate: Make sure to list all books, websites, and people you collaborated with or consulted while working on the homework. If relevant, indicate what software packages you used, and include any programs you may have written, or additional data. Failure to provide credit or to indicate these sources will affect your grade.

I may ask you to meet with me to discuss details of homework sets, and I suggest that before you turn in your work, you make a copy, so you can consult it if needed.

Occasionally, I post links to supplementary material on Google+ and Twitter.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, January 12th, 2015 at 11:12 am and is filed under 311: Foundations of geometry. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

The description below comes from József Beck. Combinatorial games. Tic-tac-toe theory, Encyclopedia of Mathematics and its Applications, 114. Cambridge University Press, Cambridge, 2008, MR2402857 (2009g:91038). Given a finite set $S$ of points in the plane $\mathbb R^2$, consider the following game between two players Maker and Breaker. The players alternat […]

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

It is easy to see without choice that if there is a surjection from $A$ onto $B$, then there is an injection from ${\mathcal P}(B)$ into ${\mathcal P}(A)$, and the result follows from Cantor's theorem that $B

Only noticed this question today. Although the selected answer is quite nice and arguably simpler than the argument below, none of the posted answers address what appeared to be the original intent of establishing the inequality using the Arithmetic Mean-Geometric Mean Inequality. For this, simply notice that $$ 1+3+\ldots+(2n-1)=n^2, $$ which can be easily […]

First of all, $f(z)+e^z\ne 0$ by the first inequality. It follows that $e^z/(f(z)+e^z)$ is entire, and bounded above. You should be able to conclude from that.

Yes. The standard way of defining these sequences goes by assigning in an explicit fashion to each limit ordinal $\alpha$, for as long as possible, an increasing sequence $\alpha_n$ that converges to $\alpha$. Once this is done, we can define $f_\alpha$ by diagonalizing, so $f_\alpha(n)=f_{\alpha_n}(n)$ for all $n$. Of course there are many possible choices […]

I disagree with the advice of sending a paper to a journal before searching the relevant literature. It is almost guaranteed that a paper on the fundamental theorem of algebra (a very classical and well-studied topic) will be rejected if you do not include mention on previous proofs, and comparisons, explaining how your proof differs from them, etc. It is no […]