This optional exercise is due Thursday, February 12, at the beginning of lecture.

Show that the projective plane obtained through the vector space construction applied to the field of two elements is (isomorphic to) the Fano plane.

I review the construction: To form we start with a field and consider .

A point in the projective plane is just a line in through the origin. Note that any such line is obtained by fixing a non-zero element of and considering all its scalar multiples, all the vectors with .

(When , the only values of are and , so a line consists of only two points, one of which is the origin.)

A line in the projective plane is actually the collection of lines contained in a plane in through the origin. In other words, a set of points (that is, of lines through the origin) is a line iff there is a plane in that contains the lines that are the elements of and no others. Note that any such plane can be described by fixing coefficients in , not all equal to zero, and considering the set of vectors such that .

To show that when this construction produces the Fano plane it is not enough to indicate that the resulting space consists of points and lines, you also need to verify that these can be identified with the points and lines of the Fano plane in such a way that all incidence relations in the Fano plane are verified in this space and no, others.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Tuesday, February 10th, 2015 at 12:41 pm and is filed under 311: Foundations of geometry. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

The description below comes from József Beck. Combinatorial games. Tic-tac-toe theory, Encyclopedia of Mathematics and its Applications, 114. Cambridge University Press, Cambridge, 2008, MR2402857 (2009g:91038). Given a finite set $S$ of points in the plane $\mathbb R^2$, consider the following game between two players Maker and Breaker. The players alternat […]

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

I am looking for references discussing two inequalities that come up in the study of the dynamics of Newton's method on real-valued polynomials (in one variable). The inequalities are fairly different, but it seems to make sense to ask about both of them in the same post. Most of the details below are fairly elementary, they are mostly included for comp […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Not necessarily. That $\mathfrak m$ is consistently singular is proved in MR0947850 (89m:03045) Kunen, Kenneth. Where $\mathsf{MA}$ first fails. J. Symbolic Logic 53(2), (1988), 429–433. There, Ken shows that $\mathfrak{m}$ can be singular of cofinality $\omega_1$. (Both links above are behind paywalls.)

No, the rank of a set $x$ is the least $\alpha$ such that $x\in V_{\alpha+1}$. Note that if $\alpha$ is limit, any $x\in V_\alpha$ belongs to some $V_\beta$ with $\beta

The real numbers are the usual thing. Surreal numbers are not real numbers, so no, they are not an example of non-constructible reals. Any real $r$ can be written as an infinite sequence $(n;d_1,d_2,\dots)$ where $n$ in an integer and the $d_i$ are digits. Whether the real is rational, constructible or not, is irrelevant. Any rational number, in fact, any al […]

Following Tomas's suggestion, I am posting this as an answer: I encountered this problem while directing a Master's thesis two years ago, and again (in a different setting) with another thesis last year. I seem to recall that I somehow got to this while reading slides of a talk by Paul Pollack. Anyway, I like to deduce the results asked in the prob […]

This is a beautiful and truly fundamental result, and so there are several good quality presentations. Try MR1321144. Kanamori, Akihiro. The higher infinite. Large cardinals in set theory from their beginnings. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1994. xxiv+536 pp. ISBN: 3-540-57071-3, or any of the newer editions (the 2003 second ed […]