311 – HW 8

HW 8 is due Tuesday, April 28, at the beginning of lecture.

Work in hyperbolic geometry. Given a triangle \triangle ABC, recall that its Saccheri quadrilateral \Box ABB'A' based at \overleftrightarrow{AB} is defined as follows: Let M be the midpoint of \overline{AC} and N be the midpoint of \overline{CB}. Let A',B' be the feet of the perpendiculars from A and B to MN, respectively.

Continuing with the same notation, suppose now that G is an arbitrary point on \overleftrightarrow{MN}, and let H be a point on the ray \overrightarrow{AG} with GH=AG. Show that \Box ABB'A' is also the Saccheri quadrilateral of \triangle ABH based at \overleftrightarrow{AB}.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: