Typical reflection principles in set theory are concerned with the height of the universe, or the relative height of certain stages. The resemblance between stages or between the universe itself and some of these stages is a very useful guiding principle that serves us to motivate large cardinal statements and many consequences of forcing axioms.

It is natural to wonder about similar reflection principles concerned instead with the width of the universe. In our paper Inner-model reflection principles, Neil Barton, Gunter Fuchs, Joel David Hamkins, Jonas Reitz, Ralf Schindler and I consider precisely this kind of reflection. Say that the inner-model reflection principle holds if and only if for any set , any first-order property true in the universe already holds in some proper inner model containing as an element.

We establish the consistency of the principle relative to ZFC. In fact, we build a model of the stronger ground-model reflection principle, where we further require that any such first-order reflects to a ground of , that is, an inner model with such that is a set-generic extension of . A formal advantage of this principle is that, using results in what we now call set-theoretic geology, ground-model reflection is formalizable as a first-order schema. Inner-model reflection, on the other hand, seems to genuinely require a second-order formalization. It is still open whether this is indeed the case, in our paper we explain some of the difficulties in showing this.

The paper studies the principle under large cardinals and forcing axioms, and compares it with other statements considered in recent years, such as the maximality principle or the inner model hypothesis. The most technically involved and interesting results in the paper show that inner-model reflection and even ground-model reflection hold in certain fine-structural inner models but also that this requires large cardinals, and that the large cardinal requirements differ for both principles (precisely a proper class of Woodin cardinals is needed for ground-model reflection).

Curiously, the paper started as a series of informal exchanges in response to a question on math.stackexchange.

See also here. The paper will appear in Studia Logica. Meanwhile, it can be accessed on the arXiv, or in my papers page.

This entry was posted on Saturday, February 2nd, 2019 at 1:35 pm and is filed under math.LO, Papers. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

You assume $\omega_\alpha\subseteq M$ and $X\in M$ so that $X$ belongs to the transitive collapse of $M$ (because if $\pi$ is the collapsing map, $\pi(X)=\pi[X]=X$. You assume $|M|=\aleph_\alpha$ so that the transitive collapse of $M$ has size $\aleph_\alpha$. Since you also have that this transitive collapse is of the form $L_\beta$ for some $\beta$, it fol […]

Perhaps the following may clarify the comments: for any ordinal $\delta$, there is a Boolean-valued extension of the universe of sets where $2^{\aleph_0}>\aleph_\delta$ holds. If you rather talk of models than Boolean-valued extensions, what this says is that we can force while preserving all ordinals, and in fact all initial ordinals, and make the contin […]

I do not know of any active set theorists who think large cardinals are inconsistent. At least, within the realm of cardinals we have seriously studied. [Reinhardt suggested an ultimate axiom of the form "there is a non-trivial elementary embedding $j:V\to V$". Though some serious set theorists found it of possible interest immediately following it […]

There is a fantastic (and not too well-known) result of Shelah stating that $L({\mathcal P}(\lambda))$ is a model of choice whenever $\lambda$ is a singular strong limit of uncountable cofinality. This is a consequence of a more general theorem that can be found in 4.6/6.7 of "Set Theory without choice: not everything on cofinality is possible", Ar […]

In set theory, definitely the notion of a Woodin cardinal. First, it is not an entirely straightforward notion to guess. Significant large cardinals were up to that point defined as critical points of certain elementary embeddings. This is not the case here: Woodin cardinals need not be measurable. If $\kappa$ is Woodin, then $V_\kappa$ is a model of set the […]

Take $a_n=p$, where $p$ is the smallest prime dividing $n$. If a subsequence converges, it converges to a prime $p$, in which case except for finitely many initial terms, the sequence is eventually constant with value $p$. But the number of initial terms is arbitrary.

The precise consistency strength of the global failure of the generalized continuum hypothesis is somewhat technical to state. As far as I know, it has not been published, but I think we have a decent understanding of what the correct statement should be. The most relevant paper towards this result is MR2224051 (2007d:03082). Gitik, Moti Merimovich, Carmi. P […]

There are integrable functions that are not derivatives: Any function that is continuous except at a single point, where it has a jump discontinuity, is an example. (Derivatives have the intermediate value property.) More interestingly, we can ask whether the existence of an antiderivative ensures integrability. The answer depends on what integral you are co […]

$0^¶$ is the sharp for an inner model with a strong cardinal in the same sense that $0^\dagger$ is the sharp for an inner model with a measurable cardinal. In terms of mice, this is the first mouse containing two overlapping extenders. The effect of this is that, by iterating its top measure throughout the ordinals, you extend the bottom extender in a variet […]

Clearly $\omega^\omega\le(\omega+n)^\omega$. Also, $(\omega+n)^\omega\le (\omega^2)^\omega=\omega^{(2\cdot \omega)}=\omega^\omega$, and the equality follows. If you do not feel comfortable with the move from $(\omega^2)^\omega$ to $\omega^{(2\cdot \omega)}$, simply note the left-hand side is $\omega\cdot\omega\cdot\omega\cdot\dots$, where there are $2\cdot\o […]