580 -Cardinal arithmetic (8)

March 5, 2009

4. Large cardinals and cardinal arithmetic

In section 3 we saw how the powers of singular cardinals (or, at least, of singulars of uncountable cofinality) satisfy strong restrictions. Here I show that similar restrictions hold at large cardinals. There is much more than one could say about this topic, and the results I present should be seen much more like an invitation than a full story. Also, for lack of time, I won’t motivate the large cardinals we will discuss. (In the ideal world, one should probably say a few words about one’s beliefs in large cardinals, since their existence and even their consistency goes beyond what can be done in the standard system {{\sf ZFC}.} I’ll however take their existence for granted, and proceed from there.)

1. Measurable cardinals

Definition 1 {\kappa} is a measurable cardinal iff {\kappa>\omega} and there is a nonprincipal {\kappa}-complete ultrafilter over {\kappa.}

Read the rest of this entry »