175- Partial fractions decomposition

November 18, 2008

[This post replaces the previous version from October 12, 2008. The new argument is significantly simpler than the one originally posted.]

I want to present here a Calculus II-level proof that the method of partial fractions decomposition works. I will actually show a more general result, which will greatly simplify the presentation and get rid of most problems of the somewhat awkward formulation below.

We need some notation:

  • \prod_{i=1}^n a_i means a_1\times a_2\times\dots\times a_n.
  • p(x), q(x), etc, denote polynomials with real coefficients.

The proof that I show below is algorithmic in nature, meaning that it provides us with a method to find the relevant constants for any given specific polynomials p and q. The constants we obtain are real numbers.

That the method of partial fractions decomposition works means that we can always find the relevant constants the method requires.

Read the rest of this entry »