Foundations of Mathematics

February 1, 2019

Foundations of Mathematics, Andrés E. Caicedo, James Cummings, Peter Koellner, and Paul B. Larson, eds., Contemporary Mathematics, vol. 690, Amer. Math. Soc., Providence, RI, 2017. DOI: 10.1090/conm/690. MR3656304. Zbl 06733965.

This book contains the proceedings of the conference in honor of Hugh Woodin’s 60th birthday, that I previously discussed on this blog (here, here, and here).

The AMS page for the volume can be found here, including the table of contents and links to the front- and endmatter (which I think are available to everybody) and links to the individual papers (which I imagine may not be).

Advertisement

Woodin conference

March 11, 2015

Woodin_Poster

The conference in honor of Hugh Woodin’s 60th birthday will take place at Harvard University, on March 27-29, 2015. The meeting is partially supported by the Mid-Atlantic Mathematical Logic Seminar and the National Science Foundation. Funding is available to support participant travel. Please write to woodinbirthdayconference@gmail.com to apply for support, and to notify the organizers if you are planning to attend.

The list of speakers is as follows:

  • H. Garth Dales
  • Qi Feng
  • Matthew D. Foreman
  • Ronald Jensen
  • Alexander S. Kechris
  • Menachem Magidor
  • Donald A. Martin
  • Grigor Sargsyan
  • Theodore A. Slaman
  • John R. Steel.

We expect to publish proceedings of the conference, together with select additional research and survey papers, through the series Contemporary Mathematics, of the AMS. The editors of the proceedings are myself, James Cummings, Peter Koellner, and Paul Larson. Please contact me for information regarding the proceedings.

Additional information can be found at the conference website.


Set theory seminar -Richard Ketchersid: Quasiiterations I. Iteration trees

January 19, 2009

In October 24-November 14 of 2008, Richard Ketchersid gave a nice series of talks on quasiiterations at the Set Theory Seminar. The theme is to correctly identify `nice’ branches through iteration trees, and to see how difficult it is for a model to compute these branches. Richard presented a prototypical result in this area (due to Woodin) and a nice application (due to Jackson and Ketchersid). This post will be far from self-contained, and only present some of the definitions.

[Edit Sep. 25, 2010: My original intention was to follow this post with two more notes, on Woodin’s result and on the Jackson-Ketchersid theorem, but I never found the time to polish the presentation to a satisfactory level, so instead I will let the interested reader find my drafts at Lucien’s library.]

I’ll assume known the notions of extender and Woodin cardinal, and associated notions like the length or strength of an extender. A good reference for this post is Donald Martin, John Steel, Iteration trees, Journal of the American Mathematical Society 7 (1) 1994, 1-73. As usual, all inaccuracies below are mine. Some of the notions below are slightly simpler than the official definitions. These notions are all due to Donald Martin, John Steel, and Hugh Woodin.

In this post I present the main notions (iteration trees and iterability) and close with a quick result about the height of tree orders. The order I follow is close to Richard’s but it differs from his presentation at a few places.

Read the rest of this entry »