Previous | Up | Next Book

MR2267147 (2007g:03064) 03E45 (03E35 03E55)
Caicedo, Andrés Eduardo (1-CAIT)
Real-valued measurable cardinals and well-orderings of the reals. (English summary)
Set theory, 83-120, Trends Math., Birkhäuser, Basel, 2006.
Summary: "We show that the existence of atomlessly measurable cardinals is incompatible with the existence of well-orderings of the reals in $L(\mathbb{R})$, but consistent with the existence of wellorderings of the reals that are third-order definable in the language of arithmetic. Specifically, we provide a general argument that, starting from a measurable cardinal, produces a forcing extension where \mathfrak{c} is real-valued measurable and there is a Δ_{2}^{2}-well-ordering of \mathbb{R}. A variation of this idea, due to Woodin, gives Σ_{1}^{2}-well-orderings when applied to $L[\mu]$ or, more generally, $\Sigma_{1}^{2}\left(\operatorname{Hom}_{\infty}\right)$ if applied to nice inner models, provided enough large cardinals exist in V. We announce a recent result of Woodin indicating how to transform this variation into a proof from large cardinals of the Ω-consistency of real-valued measurability of \mathfrak{c} together with the existence of Σ_{1}^{2}-definable wellorderings of \mathbb{R}. It follows that if the Ω-conjecture is true, and large cardinals are granted, then this statement can always be forced.
"However, we introduce a strengthening of real-valued measurability (real-valued hugeness), show its consistency, and prove that it contradicts the existence of third-order definable wellorderings of \mathbb{R}."
\{For the entire collection see MR2267421 (2007e:03005)\}
(c) Copyright American Mathematical Society 2007, 2011

