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Given a set D of positive numbers, let Xn(D) denote the graph with vertex set Rn

where two points are joined by an edge precisely when their distance is in D. The exact
determination of the chromatic number Chr(Xn(D)) is a significant problem, open even
for n = 2, D = {1} [see, for example, A. Soifer, The mathematical coloring book, Springer,
New York, 2009; MR2458293 (2010a:05005)].

Much work has gone also into determining Chr(Xn(D)) for various D. The authors
give a brief but careful review of known results. Recently, the conjecture that if D is
algebraically independent then Chr(Xn(D)) is finite was raised in [B. Bukh, Geom.
Funct. Anal. 18 (2008), no. 3, 668–697; MR2438995 (2009m:52037)]. The paper proves
a weaker result, namely that for such D, Chr(Xn(D)) is countable.

More precisely: Proposition 1 shows that Chr(X1(D)) = 2 if D is Q-linearly indepen-
dent. Theorem 1 shows that if D is algebraically independent Chr(X2(D)) is countable,
and Theorem 2 shows the same for Chr(Xn(D)) for n ≥ 3. Finally, Theorem 3 shows
that for any countable subfield F of C, and any D ⊆ C algebraically independent over Q,

we have that Chr(Yn) is countable, where Yn is the graph on Cn where two points ~a,~b are
joined by an edge iff there is some polynomial p(~x,~y) ∈ F[~x,~y] with p(~x,~x) identically

zero, and p(~a,~b) 6= 0 algebraic over some d ∈D∪F.
Besides (basic) algebra, the proofs combine (finite) Ramsey theory and canonical

Ramsey theory, with set theoretic and model theoretic arguments. The paper is carefully
written. Bukh’s general conjecture remains open. Andrés Eduardo Caicedo
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