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Abstract. We present Barna’s proof of the following result: Suppose that f

is a polynomial all of whose roots are real and N is is associated Newton’s

function. If r is a root of f and its immediate basin of attraction Ir = (a, b) is
bounded, then |N ′(a)| > 1 and |N ′(b)| > 1.

1. Introduction

If f is a differentiable function, we define N = Nf , Newton’s function for f , by

Nf (x) = x− f(x)

f ′(x)

for all values of x such that f ′(x) 6= 0. Under reasonable assumptions on f , N can
be extended (by continuity) so that it is also defined at those points x such that
f(x) = f ′(x) = 0. Note that if f ′(x) 6= 0, then N ′(x) exists, and we have

N ′(x) =
f(x)f ′′(x)

(f ′(x))2
.

The function N is of course the function obtained through the application of
the familiar Newton’s method for approximating roots of f . Recall that (under
reasonable assumptions on f) the method starts with a guess x0 for a root of f ,
and refines this guess successively, with each new guess xn+1 being obtained from
the previous one xn by replacing f with its linear approximation at x = xn, that
is, with the line y− xn = f ′(xn)(x− xn), and letting xn+1 be the value of x where
this approximation equals 0, that is, xn+1 = Nf (xn).

One can say much about what makes a function “reasonable”, but for the pur-
poses of this note it suffices that polynomials certainly fall under this category. One
easily verifies that if (f is a real valued polynomial and) f(x∗) = 0 then there is an
open neighborhood I of x∗ such that if x0 ∈ I, then for all n we have that xn is
defined, xn ∈ I, and limn→∞ xn = x∗. This is perhaps easiest to see if we assume
that x∗ is a simple zero, that is, f(x∗) = 0 6= f ′(x∗). In this case N ′(x∗) = 0
and, by continuity, N(x) and N ′(x) are defined, and |N ′(x)| < 1, for all x in a
neighborhood (x∗ − ε, x∗ + ε) of x∗. But if x is in this neighborhood, by the mean
value theorem we have that |N(x) − x∗| = |N(x) − N(x∗)| < |x − x∗|. It follows
that N(x) is also in this neighborhood, and that successive applications of N result
in a sequence that converges to x∗.

The largest interval I about x∗ such that for any point x0 in I the sequence
x0, x1, . . . , xn+1 = N(xn), . . . is well defined and converges to x∗, we call the im-
mediate basin of attraction of x∗. One can verify that I is open, that N(I) = I, and
that if I is bounded, say I = (a, b), then N(a) = b and N(b) = a, so that {a, b} is a
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cycle of period 2 for N . By the observations above, we know that if c is whichever
of a and b is closest to x∗, then |N ′(c)| ≥ 1.

The study of the dynamics of Newton’s method is very interesting. Nowadays,
most work on the subject is part of the more general topic of complex dynamics,
but the study of the dynamical behavior on R deserves to be better known. In this
note I present a result of Barna, who in the late 1950s and early 1960s began such
a study. The result is an inequality that improves the observation at the end of the
previous paragraph. This inequality is useful in studying the chaotic behavior of
the method for polynomials of degree at least 4, see for instance [SU84].

2. Barna’s inequality

Theorem (Barna [Bar61]). Suppose that f is a polynomial all of whose roots are
real. If r is a root of f and its immediate basin of attraction Ir = (a, b) is bounded,
then |N ′(a)| > 1 and |N ′(b)| > 1.

Barna’s argument is completely elementary, but it is not easy to locate it in
modern literature.

Proof. Let f(x) = α(x − r1)n1 . . . (x − rk)nk where α 6= 0, r1 < r2 < · · · < rk,

and the ni are positive integers. Suppose that f has degree n, so that

k∑
j=1

nj = n.

Letting

Φ(x) =
f ′(x)

f(x)
,

we see that Φ(x) = 1/(x − N(x)) and Φ(x) =

k∑
j=1

nj
x− rj

. Suppose r = ri, a, and

b are as in the statement of the theorem, so that N(a) = b, N(b) = a, a < r < b,
and all other rj lie outside of [a, b]. Since Ir = (a, b), in particular we have that
N ′(a), N ′(b) < 0, though we do not need to assume this (it will follow from the
analysis below). Note that

−Φ(a) =

k∑
j=1

nj
rj − a

=
1

b− a
, (1)

and

Φ(b) =

k∑
j=1

nj
b− rj

=
1

b− a
. (2)

Also,

N ′(x) =

(
x− 1

Φ(x)

)′
= 1 +

Φ′(x)

(Φ(x))2
.

We need to prove that 1 +
Φ′(a)

(Φ(a))2
< −1 or, equivalently,

−Φ′(a) >
2

(b− a)2
.

Similarly, we need to prove that

−Φ′(b) >
2

(b− a)2
.
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Since −Φ′(x) =

k∑
j=1

nj
(x− rj)2

, our task is to deduce from (1) and (2) that

k∑
j=1

nj
(a− rj)2

>
2

(b− a)2
, (3)

and
k∑

j=1

nj
(b− rj)2

>
2

(b− a)2
. (4)

Let dj =
a− rj
b− rj

, so that dj > 0 for j 6= i, and di < 0 (recall that r = ri). We have

that rj =
a− bdj
1− dj

and therefore rj − a =
dj(a− b)

1− dj
. Hence (1) is equivalent to

k∑
j=1

nj(1− dj)
dj

= −1,

or
k∑

j=1

nj
dj

=

k∑
j=1

nj − 1 = n− 1,

or
k∑

j=1
j 6=i

nj
dj

= n− 1 +
ni
|di|

. (5)

Similarly, b− rj =
b− a
1− dj

, so that (2) is equivalent to

k∑
j=1
j 6=i

njdj = n− 1 + ni|di|, (6)

while (3) and (4) are respectively equivalent to

k∑
j=1

nj
d2
j

> n (7)

and
k∑

j=1

njd
2
j > n. (8).

Now we make use of the following lemma:

Lemma 2.1. Suppose that n, p are positive integers with n > p, that s1, . . . , sn−p
and t are positive reals, and that

n−p∑
j=1

sj = n− 1 + pt
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and
n−p∑
j=1

1

sj
= n− 1 +

p

t

hold. It then follows that
n−p∑
j=1

s2
j + pt2 > n.

First we prove that the lemma gives us the result. Note first that, under the
assumptions of the lemma, we also have that

n−p∑
j=1

1

s2
j

+
p

t2
> n.

To see this, simply apply the lemma with 1/s1, . . . , 1/sn−p and 1/t in place of
s1, . . . , sn−p and t.

Now, if p = ni, t = |di|, and for each j with 1 ≤ j ≤ k and j 6= i, we have that
sl = dj for precisely nj indices l, then the assumptions of the lemma correspond
exactly to (5) and (6), while its conclusion is precisely (7), and the additional
conclusion remarked in the paragraph above is precisely (8).

It remains to prove the lemma.

Proof. We consider two cases: Suppose first that t < sj for all j. Then∑
j

(sj − 1)2 =
∑
j

s2
j − 2

∑
j

sj + n− p =
∑
j

s2
j − 2(n− 1 + pt) + n− p,

or∑
j

s2
j =

∑
j

(sj−1)2 +2(n−1+pt)−n+p =
∑
j

sj

(
sj − 2 +

1

sj

)
+n+2pt+p−2.

Using that x+ 1/x ≥ 2 for all x > 0, we conclude that∑
j

s2
j ≥

∑
j

t

(
sj − 2 +

1

sj

)
+ n+ 2pt+ p− 2

= t(n− 1 + pt)− 2t(n− p) + t
(
n− 1 +

p

t

)
+ n+ 2pt+ p− 2

= pt2 + t(4p− 2) + n+ 2p− 2
> n− pt2,

as wanted.
If, on the other hand, t ≥ sj for some j, we may as well assume that t ≥ s1 and,

using the convexity of the function g(x) = x2, we have that√ ∑
j>1 s

2
j

n− p− 1
≥
∑

j>1 sj

n− p− 1
=
n− 1 + pt− s1

n− p− 1
,

so ∑
j>1

s2
j ≥ (n− 1 + pt− s1)2

n− p− 1
=

(n− p− 1 + p+ pt− s1)2

n− p− 1

= n− p− 1 + 2(p+ pt− s1) +
(p+ pt− s1)2

n− p− 1
> n+ p− 1 + 2(pt− s1) ≥ n
> n− pt2,
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and the result also follows in this case. �

This completes the proof. �
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