
The Journal of Symbolic Logic

Volume 76, Number 4, Dec. 2011

BPFA AND PROJECTIVE WELL-ORDERINGS OF THE REALS

ANDRÉS EDUARDO CAICEDO AND SY-DAVID FRIEDMAN

Abstract. If the bounded proper forcing axiom BPFA holds and ù1 = ù
L
1 , then there is a lightface

Σ13 well-ordering of the reals. The argument combines a well-ordering due to Caicedo-Veličković with an

absoluteness result for models of MA in the spirit of “David’s trick.” We also present a general coding

scheme that allows us to show thatBPFA is equiconsistent withR being lightface Σ14, for many “consistently

locally certified” relationsR onR. This is accomplished through a use ofDavid’s trick and a coding through

the Σ2 stable ordinals of L.

§1. Introduction. Throughout this paper, forcing means set forcing. BPFA de-
notes the Bounded Proper Forcing Axiom introduced in Goldstern-Shelah [9].
Recall that BPFA is equivalent to the assertion that H (ù2) ≺Σ1 V

P for any proper
forcing P, see Bagaria [1].
In this paper we show that BPFA implies the existence of well-orderings of de-
scriptive set theoretic optimal complexity under the anti-large cardinal assumption
that ù1 = ùL1 .

Recall that ~C = (Cα : α < ù1) is a C-sequence (or a ladder system) iff Cα ⊆ α is
cofinal in α and of least possible order type, for all α < ù1.
In Caicedo-Veličković [5] it is shown that BPFA implies that for any C-sequence
~C there is a ∆1 well-ordering ofR in ~C as a parameter. The proof requires an under-
standing of the theory of the Mapping Reflection PrincipleMRP, see Moore [12].
Here, we combine this result with a coding method of David (see Friedman [6]
or [7, §6.2]) to prove:

Theorem 1. If BPFA holds and ù1 = ù
L[r]
1 for some real r, then there is a Σ13(r)

well-ordering of the reals.

Notice that we obtain an implication rather thanmerely a consistency result. The
conclusion is best possible in the sense that alreadyMAù1 (Martin’s axiom for partial
orders of size ù1) implies that Σ

˜

1
2 sets are Lebesgue measurable, and therefore there

are no Σ
˜

1
2 well-orderings; this goes back to Martin-Solovay [11].

Something like the smallness assumption that some L[r] computes ù1 correctly
is needed in Theorem 1. For example: Assuming that every real has a sharp, the
existence of a Σ

˜

1
3 well-ordering of the reals implies CH. In addition, in the presence

of sharps, MAù1 implies that every Σ
˜

1
3 set of reals is Lebesgue measurable. These

two statements are proved in Hjorth [10].
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Recall that a cardinal κ is reflecting iff κ is regular and Vκ is Σ2-elementary in the
universe V . Reflecting cardinals relativize down to inner models of the form L[r]
for any real r. In Goldstern-Shelah [9] it is shown that BPFA can be forced in the
presence of a reflecting cardinal; in fact, we have an equiconsistency, since BPFA
implies that ù2 is reflecting in L[r] for any real r.
Combining these observations with Theorem 1, we immediately obtain:

Corollary 2. The following are equiconsistent:

1. There is a proper class of reflecting cardinals.
2. Any forcing extension ofV admits a further forcing extension where BPFA holds
and there is a Σ

˜

1
3 well-ordering of the reals.

Proof. (2) implies that there is a proper class of cardinals that are the ù2 of
some forcing extension where BPFA holds. All these cardinals are reflecting in L,
giving (1).
Conversely, (1) implies that there is a proper class of reflecting cardinals in L.
It follows that L satisfies (2), because reflecting cardinals are preserved by small
forcing, and no forcing extension of L has any sharps. But if V is not closed under
sharps, it is easy to pass to a forcing extensionW where there is some real r such

thatùW1 = ù
L[r]
1 , see for example, Caicedo-Schindler [4]. (Much stronger reshaping

results are possible in this situation; this was first noticed in Shelah-Stanley [16] and
is implicit in earlier work by Jensen.) But then forcing over W with the standard
poset for BPFA gives us a model where Theorem 1 applies. ⊣

For the definition of remarkable cardinals see Schindler [14]. From the results
there, it follows that if ù1 is not remarkable in L then there is a proper forcing P

adding a real r such that ù1 = ù
L[r]
1 . We therefore have:

Corollary 3. Assume that ù1 is not remarkable in L. Then BPFA implies that
there is a Σ

˜

1
3 well-ordering of the reals. ⊣

It was shown inCaicedo [3] thatBPFA is consistent with the existence of projective
well-orderings of the reals, and it was already noted in Caicedo-Veličković [5] that
if ùL1 = ù1 and BPFA holds, then there is a lightface projective well-ordering.
However, the coding arguments used in these papers do not seem to suffice to
obtain a well-ordering of smaller complexity than Σ16.
It is shown in Friedman [7, Theorem 8.51] that MA + ù1 = ùL1 is consistent
with a Σ13 well-ordering. The argument uses an iteration of almost disjoint codings.
A natural attempt by the second author at generalizing this approach using Jensen-
like codings failed because we do not have the kind of reflection needed to ensure
BPFA at the end of the iteration—while the kind of reflection required byMA poses
no difficulties.
Originally we obtained a general coding argument that in particular gives us
the weaker result that from optimal hypotheses, BPFA is consistent with a Σ14
well-ordering of the reals. The well-ordering of optimal complexity is obtained
by combining some of the ideas in that argument with the result from Caicedo-
Veličković [5]. What we actually prove is the the following:

Theorem 4. Assume that MAù1 holds and ù1 = ù
L[r]
1 for some real r. Let R(~x)

be a Σ1 relation on reals with ù1 as a parameter. Then R is Σ13(r).
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Theorem 1 follows immediately from Theorem 4. This is proved in Section 2.
Since our original coding argument contains ideas that the reader may find of inde-
pendent interest, we present it in Section 3. The paper closes with some questions
in Section 4.

1.1. Acknowledgements. We want to thank the editors for their patience and
the anonymous referee, whose comments greatly improved the presentation of the
paper. The first author thanks the National Science Foundation for partial support
through grant DMS-0801189. The second author wishes to thank the Austrian
Science Fund (FWF) for its generous support through Project Number P 19375-
N18.

§2. Σ1-in-ù1 statements are Σ13. In this section we prove Theorems 1 and 4. Let
us fix some notation. Let ZFC− denote ZFC without the power set axiom. For
B ⊆ ù1, let

Even(B) = {ä | 2ä ∈ B}

and

Odd(B) = {ä | 2ä + 1 ∈ B}.

To avoid carrying an additional parameter around, we assume from now on that
ù1 = ùL1 .
We begin with Theorem 4. AssumeMAù1 .
Let R(~x, z) be a Σ1 formula such that R(~x,ù1) defines a relation on reals. Fix
a tuple ~x of reals. The argument that follows is uniform in ~x. Suppose thatR(~x,ù1)
holds.
Say thatM is a candidate iff it is a transitive model of ZFC− such that x,ù1 ∈M .
By reflection, using that R is Σ1, it follows there is a small candidateM such that
M |= R(~x,ù1), where a small candidate is a candidate of size ù1. Thus, there is
a set A ⊆ ù1 coding a small candidate that models R(~x,ù1). Here, that A codes
MA means that, viewing A as a binary relation on ù1 (via Gödel pairing), we have
that (ù1, A) is isomorphic to (MA,∈). Note that in any transitive model of ZFC

−

that contains A as an element,MA is also an element.
To say thatA codes such a small candidate is equivalent to saying that there is an
ordinal â such that A ∈ Lâ [A, ~x], Lâ [A, ~x] |= ZFC

−, and

Lâ [A, ~x] |= ø(~x,A),

where ø is a statement indicating that the model coded by A satisfies R(~x,ù1).
Letting â0 be the least such â , we have that â0 is of size ù1 and there is a club C
of ordinals α < ù1 and a sequence (Mα | α ∈ C ) of countable models such that

∀α ∈ C (Mα ≺ Lâ0 [A, ~x] andMα ∩ ù1 = α).

Let Y ⊆ ù1 code (C,A) in the sense that Odd(Y ) = A and if Y0 = Even(Y ) and
{cα | α < ù1} is the increasing enumeration of the elements of C , then:

• Y0 ∩ ù codes a well-ordering of type c0.
• Y0 ∩ [ù, c0) = ∅.
• For all α, Y0 ∩ [cα , cα + ù) codes a well-ordering of type cα+1.
• For all α, Y0 ∩ [cα +ù, cα+1) = 0.
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Note that the following statement (∗) holds:

WheneverM is a countable transitivemodel of ZFC− such thatY ∩ùM1 ∈
M , ùM1 = (ù

L
1 )
M , and ~x ∈M , then

M |= R(~x,ùM1 ).

This is because for any suchM , ä = ùM1 belongs to C , A∩ ä ∈ M , and (ä,A ∩ ä) is
isomorphic to a transitive modelN ; moreover, sinceN is obtained via the transitive
collapse of (ä,A∩ä), N ∈M . AsN satisfiesR(~x,ùM1 ) andR(~x, z) is a Σ1 formula,
so doesM .
Let ~r be the canonical L-sequence of ù1 many almost disjoint reals defined by
setting ~r = (rα | α < ù1) where the set rα ⊆ ù consists of those numbers that code
a finite initial segment of the α-th real in the natural well-ordering of L. These sets
rα have pairwise finite intersection.
Let P be the almost disjoint coding forcing that codes Y as a real r relative to ~r.
Recall that conditions in P are pairs (s, a) where s is a finite subset of ù and a
is a finite subset of {râ | â ∈ Y}. Extension is defined by: (s, a) ≤ (t, b) iff s
end-extends t, a contains b as a subset, and s \ t is disjoint from each element of b.
This forcing is ccc because any two conditions with the same first component
are compatible and there are only countably many first components. The generic
produces a subset z of ù such that, for all countable â , z is almost disjoint from râ
exactly if â belongs to Y . Then the following property (∗∗) holds:

For any countable transitive modelM of ZFC− such that z, ~x ∈ M and
M |= ù1 = ùL1 , we have thatM |= R(~x,ùM1 ).

This is because any suchM can reconstruct Y ∩ùM1 and so we can apply (∗).
Since we are assumingMAù1 , there is in V a real z as above.
This shows that there is a Σ13 statement ϕR(~x) (namely, the assertion that there is
a real z such that (∗∗) holds) such that ϕ(~x) holds whenever R(~x,ù1) does.
Conversely, If ϕR(~x) holds as witnessed by the real z, then (∗∗) holds without the
restriction thatM be countable, by reflection. But then R(~x,ù1) holds.
This completes the proof of Theorem 4.
But Theorem 1 follows at once as well, noticing that the argument from Caicedo-
Veličković [5] shows that, under the assumption of BPFA + ù1 = ùL1 , there is
a Σ1 well-ordering of H (ù2) in ù1 as a parameter, since any transitive modelM of
ZFC

− that computes ù1 correctly would be able to compute correctly the L-least
C-sequence ~C , and this is also a C-sequence in V andM .

Remark 5. The argument above can be generalized, as long as there is no inner
model with ù many strong cardinals, since in this case K exists and only has
finitely many strong cardinals, see Caicedo-Schindler [4, Theorem 2]. For example:
Suppose that 0¶ does not exist and that ù1 = ùK1 . Then the set of codes for locally
countable initial segments of K is Π12, see Zeman [17].
The argument above gives us in this case that, if MA holds, then Σ1 properties of
reals with parameter ù1 are equivalent to Σ14 properties. It then follows that if in
fact BPFA holds, then there is a Σ14 well-ordering of the reals.
See Friedman-Schindler [8, Corollary 2.3] for the corresponding computation
of codes in the presence of only finitely many strong cardinals in K , from which
projective well-orderings of the reals can be extracted by our argument if ù1 = ùK1
and BPFA holds.
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§3. Coding relations in a Σ14 fashion. In what follows, we identify definable rela-
tions with their definitions. Given a relationR′ onR definable (using groundmodel
parameters), and an iteration ~P = 〈Pα , Q̇α | α ≤ κ〉, say that a relation R on R in

the extension by Pκ is locally certified by R′ with respect to ~P iff the following two
conditions hold:

1. Uniformly in the ground model, whenever G is Pκ-generic, for each tuple
~r of reals of V [G ] (of the appropriate length) such that V [G ] |= R(~r), we
can identify an intermediate stage α such that ~r already belongs to the α-th
intermediate model V [Gα ], and V [Gα] |= R

′(~r).
2. R inV [G ] is the relation given byR(~r) iffV [Gα] |= R′(~r) for some α as above.

The goal of this section is to show that, working over L in the presence of
a reflecting cardinal κ, given a definable R′, there is a countable support iteration
~P = 〈Pα , Q̇α | α ≤ κ〉 forcing BPFA such that, if G is Pκ-generic over V and

R ∈ V [G ] is locally certified by R′ with respect to ~P, then R is Σ14.
(Note that R(~r) does not necessarily imply R′(~r) in V [G ].)
Fix R′, that (to ease notation) we assume binary. The iteration we consider
enhances the standard (Goldstern-Shelah) iteration that forces BPFA, by including
stages at which certain trees are specialized, following a method of Baumgartner [2],
and atwhich “Π12witnesses” to these specializations are added, following themethod
of David. To prevent the witnessing of BPFA from damaging the codings, we are
forced to concentrate the iteration on stages α that are ΣL2 stable, i.e., such thatLα is
Σ2-elementary in L. Unfortunately, this forces us to also introduce Π12 witnesses to
failures of ΣL2 stability. These last witnesses lead us to a Σ

1
4 definition of the relation

R, rather than Σ13.
Typical examples of these relations R are well-orderings of R. It was in this
form that we originally found this result (BPFA is equiconsistent with the additional
requirement that there is a Σ14 well-ordering of the reals), and the stronger Theorem 1
uses several ideas of the original argument.
For reasons having to dowith the forcings that add localisingwitnesses, the factors
in the iteration will not be proper but only S -proper, in the sense described below.
After reviewing the notion of S -properness, we prove a combinatorial lemma that
will be used to carry out the coding.

Definition 6. Say that a class S is closed under truncation iff for all regular
uncountable cardinals è and all x ∈ S, we have that x ∩H (è) ∈ S.
A class S is everywhere stationary iff S is closed under truncation, and its inter-
section with [H (è)]ù is stationary for all uncountable regular cardinals è.
Suppose that S is everywhere stationary. A partial order P is S -proper iff for all
regular cardinals è > ù1 such thatP ∈ H (è), there is a club of countable elementary
substructures x of H (è) with the property that if x ∈ S and p ∈ P ∩ x, then there
is q ≤ p in P which forces the generic to intersect D ∩ x for anyD ∈ x that is dense
in P.

S -properness is a Σ2 notion (in the predicate S ), as “all regular cardinals è” can
be replaced by “the least regular cardinal è” in the above definition. This is because
if è > ù1 is the least regular cardinal such that P ∈ H (è), C witnesses the desired
property for è, and ô > è is regular, then (using closure under truncation) we have
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that

C ∗ = {x : x ∩H (è) ∈ C}

witnesses the desired property for ô.
Just as with the usual notion of properness, S -proper forcing notions preserveù1,
and S -properness is preserved under countable support iterations (see Shelah [15]).
We make essential use of the following lemma. For â a regular uncountable
cardinal, let T (â) be the tree (â+)<â of sequences through â+ of length less than â .

Lemma 7. Assume V = L and that â > ù1 is regular. Let S be an everywhere
stationary class. Suppose that Q is an S -proper forcing, that |Q| < â , and that G is
Q-generic over L. Then:

1. T (â), viewed as a forcing, is S -proper in L[G ].
2. There is a proper forcingR inL[G ] of size â++ that destroys the S -properness of
T (â); in fact, ifH isR-generic overL[G ], then in anyù1-preserving outer model
of L[G ][H ] there is no branch through T (â) which is T (â)-generic over L.

Proof. (1) Since Q ∗ ˇT (â) ≡ Q× T (â), it suffices to show that Q is S -proper in
T (â)-generic extensions of L. But the forcing T (â) is â-closed and therefore does
not add subsets of max{|Q|, ù1}; it follows that any witness to the S -properness of
Q in L is still a witness to its S -properness in any T (â)-generic extension of L.

(2) First add â++ Cohen reals with a finite support product overL[G ], producing
L[G ][H0]. Then Lévy collapse â++ to ù1 with countable conditions, producing
L[G ][H0][H1]. As ccc and ù-closed forcings are proper, this is a proper forcing
extension of L[G ].
Note that (as originally shown by Silver) in L[G ][H0][H1], any â-branch through
T (â) in fact belongs to L[G ][H0]: Otherwise we choose an L[G ][H0]-name ḃ for
the new branch and build a binary ù-tree U of conditions in the Lévy collapse,
each branch of which has a lower bound, such that distinct branches force different
interpretations of the name ḃ. It follows that in L[G ][H0], T (â) has 2ℵ0 = â++

nodes on a fixed level, which is impossible because GCH holds in L.
Thus the tree T (â) has at most ù1-many branches in L[G ][H0][H1], none of
which contains ordinals cofinal in â+ and therefore none of which is T (â)-generic
over L. Also, every node of T (â) belongs to a â-branch.
Now we use Baumgartner’s general method of “specializing a tree off a small set
of branches”.

Fact 8. If T is a tree of heightù1 with at most ℵ1 cofinal branches (and every node
of T belongs to a cofinal branch of T ) then there is a ccc forcing P such that if G is
P-generic over V then in any ù1-preserving outer model of V [G ], all cofinal branches
through T belong to V .

Proof. We outline the argument and refer the reader to Baumgartner [2] for
details.
List the branches as (bi | i < ù1) and write T as the disjoint union of bi(xi),
where the xi are distinct nodes of the tree chosen so that each xi is a node on bi and
bi(xi) denotes the tail of bi starting at xi . Now force to add a function f with finite
conditions from {xi | i < ù1} into ù such that if xi is below xj in T then f(xi)
is different from f(xj). Baumgartner [2] shows that this forcing is ccc. Now if b
is a cofinal branch through T distinct from all the branches bi in an ù1-preserving
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outer model of V [f], then b must intersect uncountably many of the branches
bi(xi) and therefore contains uncountably many nodes xi . But then the numbers
f(xi) are distinct for these uncountably many nodes xi , contradicting the fact that
f maps into ù.
This completes the proof of Fact 8. ⊣

Now use Fact 8 to create a ccc extension L[G ][H0][H1][H2] of L[G ][H0][H1] to
ensure thatT (â) (viewed as a tree of heightù1 using a cofinalù1-sequence through
(â+)L) will have no new branches in any ù1-preserving outer model. As no â-
branch through T (â) in L[G ][H0] is T (â)-generic over L and all cofinal branches
through T (â) in any ù1-preserving outer model of L[G ][H0][H1][H2] = L[G ][H ]
belong to L[G ][H0], we are done.
This completes the proof of Lemma 7. ⊣

We now begin the proof of the coding result.
Assume V = L and let κ be reflecting. Fix an appropriate bookkeeping function
f : κ → H (κ) (so that f “guesses” every object in H (κ) stationarily often). We
will use f throughout the argument to select certain objects. We use a countable
support iteration of length κ. The factors in our iteration will be S -proper for
a suitable everywhere stationary class S , that we now proceed to describe.
Suppose that è is regular and uncountable, and that x is a countable elementary
substructure of Lè . Let (x,∈) be isomorphic to Lα . We say that x collapses nicely
iff for all â ≥ α, if Lâ is a model of ZFC

− and x ∩ù1 is a cardinal in Lâ , then every
cardinal of Lα is also a cardinal of Lâ .
Let S be the class of all x in L which collapse nicely.

Lemma 9. S is everywhere stationary.

Proof. Let è be regular and uncountable, and letC ⊆ [Lè ]
ù be club, soC ∈ Lè+ .

Let x be the least elementary substructure of Lè+ that contains C as an element.
Then x ∩ Lè ∈ C . Let Lα be the transitive collapse of (x,∈). Then there is an
Lα+1-definable injection from Lα into ù and, therefore, there is no â > α such that
Lâ |= ZFC

− and x ∩ ù1 is a cardinal of Lâ . It follows that x ∈ S and therefore
x ∈ S ∩ C . Since S is clearly closed under truncation, we are done. ⊣

Let C enumerate the closed unbounded subset of κ consisting of those α such
that Lα is Σ2-elementary in Lκ. (As κ is regular, C is indeed unbounded in κ.) We
performan S -proper iteration of lengthκwith countable supportwhich is nontrivial
at stages α in C . The iteration Pα ∗ Q̇(α) up to and including stage α will belong
to Lâ where â is the least element of C greater than α. In particular, |Pα| < κ for
each α < κ, and therefore κ remains reflecting throughout the iteration.
Suppose that α belongs to C . We proceed to describe the forcing Q(α) as a six-
step iterationQ0(α) ∗ Q̇1(α) ∗ Q̇2(α) ∗ Q̇3(α) ∗ Q̇4(α) ∗ Q̇5(α). As usual, theQi(α)
are trivial, unless the bookkeeping function f at stage α gives us an object of the
appropriate kind, as specified in each instance below.

3.1. Q0(α). Inductively, Pα has size at most (α+)L. By Lemma 7, we know that
the forcing T (â), consisting of (< â)-sequences through â+, is S -proper in L[Gα]
when â is regular and at least (α++++)L. In addition, there is a forcing R(â) of size
â++ in L[Gα] which guarantees that there is no T (â)-generic over L.
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Now let αn be (α+4(n+1))L for each finite n, and let T (n), R(n) denote T (αn),
R(αn). Then both T (n) and R(n) are S -proper in any extension of L[Gα] obtained
by forcing withU (0) ∗U (1) ∗ · · · ∗U (n− 1) where eachU (i) is either T (i) or R(i).
Let Rα denote R′ from the point of view of L[Gα] and let (xα , yα) ∈ Rα be the
pair of reals in L[Gα] provided by the bookkeeping function (which guarantees that
any pair (x, y) of reals which appears in the iteration is of the form (xα , yα) for
some α).
Now take Q0(α) to be the (fully supported) ù-iteration U (0) ∗U (1) ∗ · · · where
U (n) equals T (n) if n belongs to xα ∗ yα (the join of xα and yα) and equals R(n)
otherwise. This is an S -proper forcing and Pα ∗ Q̇

0(α) belongs to Lâ , where â is the
least element of C greater than α.

3.2. Q1(α). Now we consider the Σ1 sentence with parameter from L[Gα ] ∩
P (ù1), provided by the bookkeeping function (which ensures that all Σ1 sentences
with parameter from the finalP (ù1) will be considered at some stage α < κ in C ).
Ask of this sentence whether it holds in an S -proper forcing extension of
L[Gα ][H 0], where H 0 is our Q0(α)-generic. If so, then as κ is reflecting in
L[Gα ][H

0], there is such an S -proper forcing in Lκ[Gα][H
0], and also the wit-

ness to the Σ1 sentence can be assumed to have a name in Lκ[Gα][H 0]. Let â be
the least element of C greater than α; then as Lâ is Σ2-elementary in Lκ , it follows
thatLâ [Gα ][H

0] is Σ2-elementary inLκ[Gα][H 0]. Thus we can choose our S -proper
forcingQ1(α) witnessing the Σ1 sentence to be an element ofLâ [Gα ][H

0], necessary

to satisfy the requirement that Pα ∗ Q̇1(α) belong to Lâ . LetH
1 denote the generic

for Q1(α).

3.3. Q2(α). The forcingQ2(α) has the formD1(α)∗D2(α). To see this, begin by
noticing that if ô < κ is a strong limit singular cardinal of uncountable cofinality,
then 2ô = ô+ and ô+ = (ô+)L. Otherwise, covering fails and 0♯ exists. There is
therefore a set A′ ⊆ ô+ such thatH (ô+) = Lô+ [A′]. Let D1(α) = Col(ù1, ô). This
is a countably closed forcing and it adds a subsetH 1 of ù1 such that

H (ù2) = Lù2 [A
′,H 1]

holds in the extension.
We can by further countably closed forcing arrange that there is a subset Xα of
ù1 such that

H (ù2) = Lù2 [Xα].

This is well-known (see, e.g., Schindler [13, Claims 1,2]). For example, we can pick
a sequence of almost disjoint subsets of ô inL. This gives us a sequenceA of almost
disjoint subsets of ù1 via a bijection between ù1 and ô. We can then force to code
A′ ⊕A′′ as a subsetH 2 of ù1 using the sequence A . Call D2(α) the corresponding
forcing notion.
We thus have that the resulting extension L[Gα][H 0][H 1][H 2] is of the form
L[Xα ] where Xα is a subset of ù1 which codes the ordinal α as well as the generic
H 0 ∗H 1 ∗H 2.
Then we have:

(∗) If M = Lä[Xα] is a transitive model of ZFC
−, then (α+ù)L is an

ordinal ofM , and inM there is a branch through T ((α+4(n+1))L) whose
ordinals are cofinal in (α+4(n+1))L iff n belongs to xα ∗ yα .
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3.4. Q3(α). The purpose of the forcingQ3(α) is to addYα ⊆ ù1 that “localizes”
property (∗) in the following sense:

(∗∗) For any ã < ù1 and countable transitivemodelM ofZFC
− contain-

ing Yα ∩ ã as an element: If ã = ùM1 = (ù
L
1 )
M then Odd(Even(Yα ∩ ã))

codes an L-cardinal ᾱ of M such that there is a branch through the
T ((ᾱ+4(n+1))L) ofM whose ordinals are cofinal in the (ᾱ+4(n+1))L ofM
iff n belongs to xα ∗ yα .

We nowdescribe the forcingQ3(α) for adding thewitnessYα to (∗∗). A condition
inQ3(α) is anù1-Cohen condition r : |r| → 2 inL[Xα] with the following properties:

1. The domain |r| of r is a countable limit ordinal.
2. Xα ∩ |r| is the even part of the even part of r, i.e., for ã < |r|, ã belongs to Xα
iff r(4ã) = 1.

3. (∗∗)r holds. This is the statement that (∗∗) holds for all limit ã ≤ |r| with
Yα ∩ ã replaced by r ↾ ã.

Lemma 10. Q3(α) is S -proper.

Proof. First note that we have the following extendibility property: Given r and
a countable limit ã greater than |r|, we can extend r to r∗ of length ã.
This is because we can take the odd part of r∗ on the interval [|r|, |r| + ù) to
code ã and to consist only of 0s on [|r| + ù, ã); then there are no new instances of
requirement (3) for being a condition to check because no transitive model of ZFC−

containing r∗ ↾ |r|+ ù can have its ù1 in the interval (|r|, ã].
Now in L[Xα] let è be large and regular, let M be countable and elementary in
H (è) with M ∩ L in S and let r belong to Q3(α) ∩M . Successively extend r to
r = r0 ≥ r1 ≥ · · · in M so that if D in M is dense on Q3(α) then for some k,
rk meets D. (In particular, rk forces the Q

3(α)-generic to meet D in a condition
belonging toM .) By extendibility, sup rk converges to ä :=M ∩ ù1.
We want to show that the conditions rk admit the lower bound rù =

⋃
k rk . For

this, it suffices to verify property (∗∗)rù when ã = ä, i.e.:

(∗∗∗) For any countable transitivemodelN of ZFC− containing rù as an
element: If ä = ùN1 = (ù

L
1 )
N thenOdd(Even(rù)) codes anL-cardinal ᾱ

ofM such that there is a branch through the T ((ᾱ+4(n+1))L) ofM whose
ordinals are cofinal in the (ᾱ+4(n+1))L ofM iff n belongs to xα ∗ yα .

Let M̄ = Lè̄ [Xα ∩ ä] be the transitive collapse ofM , where a is sent to ā under
the transitive collapse map. As Xα codes the generic Gα ∗H 0 ∗H 1 ∗H 2, it ensures
that in Lè [Xα] there is a branch through T ((α

+4(n+1))L) whose ordinals are cofinal
in (α+4(n+1))L iff n belongs to xα ∗ yα . By elementarity, in M̄ there is a branch
through the T ((α+4(n+1))L) of M̄ whose ordinals are cofinal in the (α+4(n+1))L of
M̄ iff n belongs to xα ∗ yα .
Now if N̄ is any countable transitive model of ZFC− containing rù as an element

such thatùN̄1 = ä, N̄ also containsXù∩ä as an element and asM∩L = LM collapses

nicely, the (α+4(n+1))L, T ((α+4(n+1))L) of M̄ are equal to those of N̄ . It follows that
also in N̄ , there is a branch through the T ((α+4(n+1))L) of N̄ whose ordinals are
cofinal in the (α+4(n+1))L of N̄ iff n belongs to xα ∗ yα , establishing (∗∗∗). ⊣

3.5. Q4(α). We next code the Q3(α)-generic Yα by a real using Q4(α), the ccc
almost disjoint codingwith finite conditions denoted byP in the proof of Theorem 4.
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3.6. Q5(α). To complete stage α of the iteration we apply a forcingQ5(α) intro-
ducing Π12 witnesses to failures of Σ

L
2 stability.

Let zα be the real in L[Gα ] provided by the bookkeeping function (so that each
real that appears anywhere in the iteration is equal to zα for some α ∈ C ).
We say that zα is a coding witness for R(x, y) (where x, y are reals in L[Gα ]) iff
we have:

(∗)zα ,x,y For any countable transitive model M of ZFC
− that contains

zα , x, y as elements and such that ùM1 = (ù
L
1 )
M , zα codes in M some

ᾱ, an L-cardinal of M , such that T ((ᾱ+4(n+1))L) has a branch whose
ordinals are cofinal in (ᾱ+4(n+1))L iff n belongs to x ∗ y.

Note that by reflection, (∗)zα ,x,y holdswithout the restriction thatM be countable.
Let ä be the L-cardinal witnessing (∗)zα ,x,y for the model

M = Lκ+ [Gα ][H
0][H 1][H 2][H 3][H 4],

where H i is the generic for Qi(α). Then if ä is not ΣL2 stable, the forcing Q
5(α)

introduces a real wα such that:

(∗∗∗∗)zα ,wα For all countable transitive models M of ZFC
− containing

zα , wα as elements and such that ùM1 = (ù
L
1 )
M , wα codes inM some â̄ ,

an L-cardinal ofM , such thatLᾱ , where ᾱ is theL-cardinal ofM coded
by zα , is not Σ2-elementary in Lâ̄ .

The forcingQ5(α) is defined analogously to the two-step iterationQ3(α)∗Q4(α),
and like that forcing, it is S -proper.
This completes stage α of the iteration.

3.7. R is Σ14. The iteration so defined is S -proper, forces κ to be at most ù2, and
is κ-cc. It follows that κ = ù2 in the generic extensionL[G ], and the standard argu-
ment shows that BPFA (indeed, the bounded forcing axiom for S -proper forcings)
holds there. Note that (by construction) R is locally certified by R′ with respect to
this iteration.
To verify that R is Σ14, say that a real z is a good coding witness for R(x, y) iff it
is a coding witness for R(x, y), and there is no w witnessing the failure of the ΣL2
stability of the L-cardinal coded by z, i.e., there is no real w such that (∗∗∗∗)z,w
holds.
The set of good witnesses is Π13. Thus R is definable in L[G ] by:

R(x, y) iff for some α in C , (x, y) = (xGα , y
G
α ) iff there exists a good

coding witness for R(x, y).

This completes the proof.

§4. Open questions. We close the paper with some natural problems suggested
by the results above:

1. In Theorem 1, can the hypothesis ù1 = ùL1 be weakened to 0
♯ does not exist?

2. IsMA+ù1 = ùL1 consistent with the nonexistence of a projective well-ordering
of the reals?

3. Does the existence of a ∆1(A) well-ordering of R (for some parameter A ∈
H (ù2)) follow from the version of the bounded forcing axiom for posets of
the from ó-closed∗ccc?
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