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Abstract

Simply definable well-orderings of the reals
by

Andrés Eduardo Caicedo
Doctor of Philosophy in Mathematics

University of California at Berkeley

Professor John Steel, Co-chair
Professor W. Hugh Woodin, Co-chair

In this thesis we explore the problem of obtaining simply definable well-orderings

of the reals together with additional combinatorial structure on the continuum. Specifically:

e We show that the following is consistent, without any restrictions in the large cardinal
structure of the universe: “c is real-valued measurable and there is a definable A%-
well-ordering of the reals”. More precisely: If there is a measurable, and GCH holds

below it, then there is a forcing extension satisfying the statement.

e We present a similar argument, due to Woodin, that when applied to L[u] produces
a forcing extension where ¢ is real-valued measurable, and there is a A2-well-ordering
of R. The best result along these lines, due to Woodin, is that under appropriate
large cardinal hypothesis, “c is real-valued measurable and there is a definable A3-

well-ordering of the reals” is {)-consistent.

e We introduce a strengthening of real-valued measurability, called real-valued hugeness,
which implies the existence of many real-valued measurable cardinals and by results
of Woodin, the determinacy of strong pointclasses. ‘For example, ADL®) holds. We
show it is consistent that ¢ is real-valued huge, and present a result of Woodin proving

that this property of ¢ contradicts the existence of any A2-well-ordering of R.

e We show that if there is no inner model with w many strong cardinals, then there is

a set forcing extension with a projective well-ordering of the reals (In fact, a ¥} +3-
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well-ordering, where n is the number of strong cardinals in K and, if n =0 and V is

not closed under sharps, then a Y3-one.)

e We show that if there are no inner models with Woodin cardinals, and V is a finestruc-
tural model for a strong cardinal with a measurable above, then there is a forcing

extension where SPFA(c) + BSPFA'™T + 4 4¢ hold and where the reals admit a Xi-

well-ordering.

We also start an investigation into the structure of inner models M of GCH when

a strong forcing axiom holds in V, and show:

e Without loss of generality, w! = w;. More precisely: If PFA(c) holds, then there is
an inner model N, M C N, such that N = GCH, w; = w{v, and wg is inaccessible in

N iff it is inaccessible in M.

e Moreover, if PFA(c) holds and w} is a successor cardinal in M, then wy = (A\H)M,
where cf(A\) = w, and [} fails in M.

e In fact, whenever M is an inner model of GCH correctly computing N; and such that

XY = (A\H)M, where cfV (\) = w, then

— In M the approachability property fails at A and there are no uniformly almost
disjoint sequences for A, in particular cf¥ AN =w.

— V' is not a weakly proper forcing extension of M, and there is no inner model
of V' that computes wy correctly where CH holds. In particular, if PFA(c) holds
then there is a real 7 such that M[r] = -CH.

— Furthermore, if wj = XY, |, then VWSy,, fails in M, and (S, )M =NS.,, S92

Professor John Steel
Dissertation Committee Co-chair

Professor W. Hugh Woodin
Dissertation Committee Co-chair
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Chapter 1

Introduction

In this dissertation we explore problems related to the effect that combinatorial
structure in the set-theoretic universe (beyond that already provided by the usual axioms)
may have on the continuum or on sets at the level of the continuum. Mainly, we look at
the definability of well-orderings of the reals in the presence of this additional combinatorial
structure.

For notational conventions see Section 1.5.

1.1 Well-orderings of the reals

By the reals we mean here the members of any of the sets w*, 2¢, [w]¥, or even R or [0, 1]. It
is well known that w* is homeomorphic to R\ Q when endowed with the product topology.
More importantly, all the spaces we have listed are standard Borel spaces and have an

isomorphic Borel structure.

Definition 1.1. Let X be a o-algebra on a space X containing all the singletons. A o-finite

measure A on (X, X) is continuous iff A\({z}) =0 for any z € X.

It is well known that for any continuous probability Borel measure A\ on any stan-
dard Borel space X there is a Borel isomorphism f : X — [0,1] with Ao f~! = u, Lebesgue
measure on [0, 1].

We will abuse language a little bit. For example, we can therefore refer to “non-
Lebesgue measurable subsets of reals”, even if the standard Borel space we are considering

is not literally the Euclidean R or the measure under discussion is not literally Lebesgue
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CHAPTER 1. INTRODUCTION 2

measure.

It is the working assumption of set-theorists that sets of reals whose existence
is solely granted by AC are in general pathological, as opposed to those which can be
“explicitly” defined. Recall ([K]) that the determinacy of sufficiently closed pointclasses
implies that their members are Lebesgue measurable, have the perfect subset property,
are Ramsey, etc. The following (folklore) result builds on a well known argument due to

Sierpinski:

Theorem 1.2. No well-ordering of a non-null set of reals is Lebesque measurable. No

well-ordering of a non-meager set of reals has the Baire property.

Proof: We prove that whenever S C R is a non-null set, (ro : @ < \) is a well-ordered
enumeration of S, and W = {(rq,78) @ < § < A}, then W is non-measurable. The
argument admits dualization, giving the result for the property of Baire.

By contradiction, let A be least such that there are a non-null set S and a well-
ordered enumeration ¥ = (14 : @ < A) of S such that W, defined as above, is measurable.
For o < A, let So = {rg:8 < a} and S* = {rg:a < B8}. Let u, be n-dimensional

Lebesgue measure. For z € R, by 7'z we mean the a < X such that z = r,.

Figure 1.1: W is a well-ordering of S C R
Notice that S is measurable: By Fubini’s theorem, for almost all € S and almost

all y € S, both S and Sy-1, are measurable. Since S = So41 US? for any a < v < A,

then S itself must be measurable.
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CHAPTER 1. INTRODUCTION 3

Now we argue that for some v < A, S, is non-null and measurable. If so, we are
done because W, = W N (S, x S,) is measurable and well-orders S, in order type v < A,
contradicting the minimality of A.

Since for almost all y € S, S,-1,, is measurable, if no S, is as wanted then almost

all of them have measure 0 and

0= (W) = [ (S dy

- / 1 (S77'7) dz.
S

But for almost all z € S, §7 % = S\ (S,-1, U{z}) has positive measure, and we have a,

contradiction. O

Remark 1.3. Notice that we are not using in any essential way that the measure under
consideration is Lebesgue measure. Exactly the same proof works to show that if (X, X, v)
is any o-finite continuous measure space, then no non-null subset of X admits a v x v-
measurable well-ordering. Hence, if ©(X) > 0 then even if ¥ = P(X) the completion of
¥ x ¥ cannot be P(X x X).

This illustrates in part that large cardinal considerations make the problem of de-
finability of well-orderings an interesting and difficult one. For example, mild large cardinal
assumptions imply that every projective set of reals is determined and therefore Lebesgue
measurable. Hence, no binary relation defined in second-order arithmetic can be a well-
ordering of a non-trivial subset of R. In fact under Projective Determinacy any projective
well-ordering of a set of reals is countable. With this in mind, a natural target is that of
¥2_definability. Before telling part of the story leading to this point, let us make it clear
that all we strive for is the consistency of simply definable well-orderings without imposing
bounds on the large cardinal structure of the universe. This can be understood, for example,
as an argument establishing upper bounds for the complexity of well behaved pointclasses.

Recall that HODg denotes the class of sets hereditarily ordinal definable using
reals as parameters. For the definition of Add(w, \) see Section 1.5; this is the standard
forcing for adding A Cohen reals. For the definition of Random) see Section 3.1, immediately

after the statement of Theorem 3.6; this is the standard forcing for adding A random reals.

Lemma 1.4. Let G be F-generic over V, where F = Add(w, A) or F = Random), A > w;.
Let R = RYICl. Then, in VIG], there is Ry C R and a nontrivial elementary embedding
7 : HODg, —> HODg such that jlorp = id.
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CHAPTER 1. INTRODUCTION 4

Corollary 1.5. Let F = Add(w, \) or F = Randomy where A > wi. Then in VF, HODR |=
=AC and therefore no relation in HODg defines a well-ordering of R. [

Remark 1.6. If A < wj, then Add(w,\) = Add(w,1) and Random) = Random,. If G is
generic over V for either of these forcings, there is a real r such that V[G] = V[r]. Thus,
V = L provides an example showing that A > w; is necessary in the statement of the

Corollary.

Proof of Lemma 1.4: Let G be F-generic over V, where F is as in the statement of the
lemma. By standard arguments (See Section 3.1 for the case F = Random, ), G = Gy x Gy,
where Gy is F-generic over V and G is FV[GO]—generic over V[Gop]. Let Rp = RVI[Go] and
R; = RY[E. In V[G] we are to define a nontrivial j : HODg, — HODg, such that
jlorp = id.

For this, notice that any « € HODg,, ¢ = 0, 1, has the form 7(7, &) where 7 € R;,
a € ORD, and 7 is some term in the language of HODg.!

Define j by

3 (r(7, @)HOPR) = 7 (i, @)NOPx.

We claim j works.

Let ¢(vg,...,v,) be any formula, let 7o(t, ¥1), ..., T(¥0, 1) be terms, and let
o, - . ., Tn, € HODg, be given by z; = 7;(7}, @)HOPR. By composing each 7; with some pro-
jections, we may assume 7; = 7, &; = & for all <. Let ¢ (¥, 1) = ¢ (70(¥o, 1), - . -, Ta(¥o, U1))

and (i(%, 1) = HODR [= (%, T).
Let X € P,,()\) be such that r € V[Golx], and let Go and G; be FV[CoIx] generics
over V[Golx] such that V[Go[x][So] = V[Go] and V[Go[g][S1] = VI[G].

Then
HODg, E(7,d) <= VI[Go] = (7, d)
= e S (VIGolx] k= plrr u(F; @)
L, V(Golx] E 1r IFr u(7, @)
&og5eq (VIGolx] E q iy pu(7; @)
= VI[G] = (T, a)
<= HODg, [ (7, a),

!This language expands the language of set theory by closing under weak Skolem functions, see Definition
1.38 below.
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CHAPTER 1. INTRODUCTION 5

where (*) holds by the weak-homogeneity of IF.
This chain of equivalences implies immediately that j is well-defined and elemen-

tary. By definition, j[orp = id, and we are done. O

Remark 1.7. Notice that with the same notation as above, j[1gg) : L(Ro) =5 L(Ry).

Essentially the same argument shows that if w; < A; < X9, H; is Randomy,-
(respectively, Add(w, A;)-) generic over V, and Hy is Randomy,- (respectively, Add(w, Az)-)
generic over V[Hj|, then in V[H;|[Hs)] there is a nontrivial embedding

j: LRV =5 L(R)

such that j]orp = id. To see this, it suffices to argue that if ¢(x, y) is a formula, r is a real,
o is an ordinal, and R is a term (for the appropriate forcing) for the reals of the generic
extension, then 1 ”—Random)\l L(R) Eo(r,a)iff 1 II-Randc,m/\2 L(]R) E o(r, a).

Suppose |A1| < |Az2], and let P be the forcing for collapsing Ag to A; with countable
conditions, so P does not add any reals. If G is Randomy,-generic over V¥ then § is Randomy, -
generic over V, this is Fact 3.20. The same holds for Random,,-generic filters, and we are

done by weak homogeneity. The argument for Cohen forcing is identical.

Thus, in general, all we can aspire to prove is the consistency of a definable well-
ordering (within certain pointclass) assuming simultaneously some additional hypothesis
which potentially interferes with this goal. There have been several partial results and
obstructions in this direction, which we proceed to list along with the main results of this

dissertation that continue this line of research.

1.1.1 Projective well-orderings

To begin with, we illustrate how a universe lacking a sufficiently rich large cardinal structure

allows for pathological well-orderings:
Fact 1.8 (Gddel). If V = L, then there is a ¥} well-ordering of the reals>. O

Since ZFC suffices to prove the Lebesgue measurability of analytic sets, no well-
ordering of R can belong to a simpler pointclass than the one given by Gédel’s result. As

a matter of fact, this complexity characterizes the reals of L:

2A well-ordering W of R is a total relation, so (z,y) ¢ W iff z = y or (y,z) € W for any z,y. Hence, for
any reasonable pointclass I', a well-ordering is in I' iff it is in —I'. For example, a well-ordering of R is 33 iff
it is Ad.
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CHAPTER 1. INTRODUCTION 6

Fact 1.9 (Mansfield). Let z € R. There is a $}(x)-well-ordering of R iff R = RHe. O

Mansfield’s result (a nice proof of which is due to Kechris) can be seen as a strong
argument against the existence of Z%-well—orderings. Pretty mild large cardinal hypotheses
already justify our feeling; for exarr:ple, if Vo € R (2! exists), then Vz € RIy € R (y ¢ L[z]),
and therefore there are no %%—Well—orderings (See also Fact 1.17, Theorem 1.13, and Fact

2.11.) In fact, the existence of sharps for reals gives us a stronger obstacle.

Theorem 1.10 (Martin). If Vz € R (z! exists), then IIi-determinacy holds and therefore

all ¥3-sets are Lebesgue measurable. O

In contrast, much stronger large cardinal assumptions (although still quite weak

within the large cardinal repertoire) are compatible with Z%-well-orderings.

Theorem 1.11 (Martin, Steel). 1. Suppose L[€] is a finestructural Martin-Steel mo-
del and

L[€] = There is no inner model with a Woodin cardinal.

Then
L[€] = There is a %}-well-ordering of R.

In fact, the natural well-ordering of L[E], when restricted to R, is of this complexity.

2. Let M, be the minimal (iterable) finestructural model for n Woodin cardinals. Then
the reals of M, admit a ¥} L3-well-ordering. More precisely, there is in M, a well-
ordering W of RMn such that M, = W is E%H_Z and (if, say, there are n Woodin

cardinals in V with a measurable above, or even if M} exists) W is L, in V.

3. If there are n Woodin cardinals with a measurable above, then all Hrll L1-Sets are deter-
mined and therefore all ©} 1o-sets are Lebesgue measurable. In particular, there are

no E}HQ—well—orderings of the reals.

4. Hence, there are no projective well-orderings of the reals in the presence of w Woodin

cardinals. O
This lands us within the ¥2-realm very quickly:

Theorem 1.12 (Woodin). If there are w Woodins with a measurable above then L(R) =
AD and in particular it is not a model of Choice. [
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CHAPTER 1. INTRODUCTION 7

Notice that Woodin’s result is not a consistency result but an implication.
Before continuing to third-order pointclasses, let us step back momentarily and

explore the projective hierarchy a bit longer.

Theorem 1.13 (Harrington?). Suppose w; = wlL[w] for some real x. Then there is a

forcing extension of the universe with a Ys-well-ordering of R. O

In fact, it is not difficult to improve 1.13 to: There is a set generic extension

of V with a Zé-well—ordering of R iff V is not closed under sharps, an assertion which is

equivalent® to the failure of [Ti-determinacy in some VCoLH@x),

Theorem 1.14 (Harrington). There is a forcing extension of L where MA holds and
there is a Eé-well-ordem'ng of R. O

Thanks to arguments of Schindler, we can improve Harrington’s result 1.13 in a

provably optimal way:

Theorem 1.15. Suppose that there is no inner model with w strong cardinals. Then there
is a set forcing extension of the universe with a projective well-ordering of the reals. In fact,
K exists and if

K = There are exactly n strong cardinals,

then the well-ordering is A,ll+3. If n =0 and V is not closed under sharps, the complezity

can be improved to be Aj.
That this is optimal follows from the following unpublished result due to Woodin:

Theorem 1.16 (Woodin). Suppose there are n strong cardinals (and that V is closed
under sharps, if n = 0.) Let X be larger than all of them. Let G be Coll{w, < A)-generic
over V. Then in V|G| the ., theory of the reals (with parameters from RVIE) cannot be
changed by further set forcing. In fact, the XL 1o-theory of the reals is Universally Baire?,

in particular measurable, and therefore no extension of V(G| admits a ) 1o-well-ordering
of R. [

See [St] Corollary 3.7 for a proof.

In a sense, Harrington’s result 1.14 is optimal:

3By Theorem 1.10 and the results in Section 1.3.
4See Definition 3.73.
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CHAPTER 1. INTRODUCTION 8

Fact 1.17 (Martin, Solovay). MA implies the Lebesgue measurability of all E%-sets. (]

We can improve his result in a different direction by obtaining a stronger forcing

axiom:

Theorem 1.18. Let M be a finestructural inner model with a strong cardinal and a mea-
surable above. Suppose there are no inner models of M with Woodin cardinals. Then there

is a forcing extension of M where the following hold®:
e SPFA(c) + BSPFATT.
o Woodin’s Yac-
e There is a Eé-well—ordering of R.

This result cannot be improved much. For example, MM(c) implies Projective
Determinacy (See [W], Theorem 9.73) and therefore is incompatible with the existence of
a projective well-ordering. Also, SPFA(c) + BSPFA*™ does not imply 4c, by an easy
modification of the argument in [AsWe]. The complexity of the well-ordering, however, is
probably not optimal.

On the other hand, if we restrict our attention to forcing extensions of inner models,
then some improvements are possible (nice behavior of simpler projective pointclasses can

be imposed). For example:

Theorem 1.19 (Friedman, Schindler). Let n > 0 and let M™ be the minimal iterable
finestructural inner model with n strongs and an inaccessible above. Then there is a forcing

extension of M™ in which all Z}L+3 -sets are Lebesgue measurable and there is a X} | 5-well-

ordering of R. [

Notice that the well-ordering obtained is lightface. Allowing the presence of pa-

rameters, Friedman and Schindler prove a stronger result:

Theorem 1.20 (Friedman, Schindler). Let M be the minimal iterable finestructural
inner model closed under the existence of sharps®, and for n > 0 let M be the minimal
iterable finestructural inner model with n strongs. Then there is a forcing extension of M*

where the following hold:

5See Definitions 2.17, 2.18 and 2.20 below.
8See Definition 1.38 below.
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CHAPTER 1. INTRODUCTION 9

All E}LH-sets are universally Baire.

ALz} 13-sets are Lebesgue measurable and have the property of Baire.

o There is a H}L+4—singleton a €R.

There is a ©} , 5(a)-well-ordering of R. [

Our results on projective well-orderings are the content of Chapter 2.

1.1.2 Third-order definable well-orderings

Let us now step beyond the projective hierarchy and L(R). The determinacy result 1.12 can

be improved under CH. In fact, a remarkable generic absoluteness theorem can be obtained:

Theorem 1.21 (Woodin). Suppose that either there is a proper class of measurable
Woodin cardinals, or a proper class of strongly compact cardinals. Suppose that CH holds.
Then all E%-sets are determined and the E%-theory of the reals (with real parameters from

the ground model) is generically invariant with respect to extensions satisfying CH. 0O

More precisely, generic invariance of a class [' of sentences with respect to a
statement ¢ means that whenever P * Q is a two-step iteration of set forcings such that
VP o+ 1 I- ¢, then for all o € T, VP |= o iff VPQ E= 4. Since we are stating 1.21 under
the assumption of CH in the ground model, generic invariance in this case can be restated
as claiming that

|4 EE% 148
whenever VP |= CH, the boldface class intending to express that real parameters from the
ground model are allowed.

That E% cannot be lifted to larger pointclasses without additional assumptions
is the content c;” the following result of Abraham and Shelah which, in a sense, was the

inspiring force behind this thesis.

Theorem 1.22 (Abraham, Shelah [ASh]). There is a poset P of size 22 which adds
no new reals and such that, in VE, CH holds and the reals admit a Y2-well-ordering. In
fact, any given relation of the reals may be encoded by a variant of P in a $%-way in some

generic extension. [
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CHAPTER 1. INTRODUCTION 10

The encoding in the Abraham-Shelah result is obtained by imposing strong restric-
tions on the Aronszajn trees of the resulting extension in such a way that some products
are special, while others are Suslin trees.

It must be mentioned that this restriction implies that ¢ fails hopelessly in the
model of Theorem 1.22.

On the other hand, if CH fails then an improvement is possible:

Theorem 1.23 (Woodin). Suppose there is a weakly compact cardinal k. Then there is
a forcing extension that preserves cofinalities where ¢ = k, MA(o-centered) holds, and there

is a E%—'well-ordem'ng of R. O

Theorem 1.24 (Abraham, Shelah [ASh1]). Let k be the first inaccessible’. Then there
is a cofinality preserving forcing extension where ¢ = xk, MA holds, and there is a E%—well—

ordering of R. 0
At the cost of a small value of ¢ the large cardinals are superfluous:

Theorem 1.25 (Solovay). There is a forcing extension where ¢ = Ro, MA(o-centered)

holds, and there is a X3-well-ordering of R. O
And even better:

Theorem 1.26 (Abraham, Shelah [ASh2}). Solovay’s result 1.25 holds with MA(o-
centered) strengthened to MA. [

Another instance of this theme constitutes the main result of this dissertation:
Fact 1.27. Assume ¢ is real-valued measurable®. Then
1. MA,,, (o-centered) and OCA fail.
2. There is no well-ordering of R in L(R).

The fact follows from a characterization of real-valued measurability in terms of

elementary embeddings due to Solovay, see 3.6, 3.31, 3.41, and 3.49 below.

"The published version of this result claims that s can be any inaccessible, but the argument given
there rests on a variant of Easton support iterations the combinatorics of which require x to be the first
inaccessible.

8See Definition 3.1.
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CHAPTER 1. INTRODUCTION 11

Theorem 1.28. Suppose that x is measurable and 2 = k. Then there is a forcing notion
F of size k that makes Kk = ¢ while preserving its real-valued measurability, and adding a

A3-well-ordering of the reals.
If the universe is thin then the complexity of the well-ordering can be simplified:

Theorem 1.29 (Woodin). If V = L[u], the minimal model for a measurable, then there

is an extension where ¢ is real-valued measurable and there is a Z%—well—ordermg of R.

In fact, at least if we grant the existence of enough large cardinals, this result can

be improved significantly:

Theorem 1.30 (Woodin). Assume there is a proper class of Woodin cardinals. Then it

is Q-consistent® that ¢ is real-valued measurable and there is a 2%—well—0rdem’ng of R. O

In Chapter 3 we sketch the proof of 1.29. Theorem 1.30 is still unpublished;
it builds on the results of [W], and makes use of an appropriate version of the following
Lemma'?. Stevo Todorcevié (in personal communication) has indicated that 1.31 was known
to James Hirschorn who (in personal communication) attributed it to an unpublished paper
by Baumgartner. To the best of my knowledge no proof of Lemma 1.31 had appeared in
print prior to this thesis. To ease the presentation, we do not state optimal hypotheses.

Compare with [GoSh], Section 3.

Lemma 1.31. Suppose PFA(c) holds. Then, after adding X1 random reals (i.e, forcing with
Randomy, ) all trees of size wy are sealed in the sense that if an outer model M sees a cofinal

branch b through a tree T € V such that b is not already in V, then w} < wM.

Proof: First, Baumgartner has an argument showing that if a tree of size and height w; has
at most wy many branches, and all trees of size and height w; with no branches are special,
then the result holds. This he achieves by generalizing the notion of special to these trees.
Given an wi-enumeration of the branches through the tree, Baumgartner defines a subtree
with no cofinal branches, thus special, and shows how to extend the specializing function

to the whole tree. See [Ba).

An argument of Laver shows that if MA holds, after adding random reals all trees

of size wy with no branches are special. See [BJ] for a proof.

9See Definition 3.94.
1%However, see the last footnote on Chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 12

Suppose ~wKH, MA and MA(o-closed) hold. -wKH is the assertion that no trees

of size w; have more than w; many branches.

Height Ny
\

A tree T

R

No All levels have size at most Ry
In total it has less than Rp-many branches

Figure 1.2: T is not a weak Kurepa tree

Let Q = Randomy, and let 7 be (with Boolean value 1) a Q-name for a tree of size
wy. Let (in V) P be the collapse of ¢ to w;. We argue that -wKH is preserved by Q. This
we do by showing that forcing by P does not add a Q-name for a branch b through 7 not
in VQ

If this holds, then the set of branches of 7 in (VF)Q is the same as the set of
branches of 7 in V@. Since (VP)Q |= CH, 7 has only w; many branches in that extension.
There is therefore a Q-term ¢ for a subtree of 7 with no cofinal branches, as defined by
Baumgartner. This term must be in V, by MA(o-closed).

By Laver’s result, VQ |= ¢ is special. Baumgartner’s argument shows then that

vQ = 7 is special, and the proof is complete.

So only the fact that P does not add a Q-name b for a “new” branch needs argu-
ing. This is proven by a standard elementary substructure argument. Suppose otherwise.

Without loss, this holds with boolean value 1, i.e.,

1lkp | b is a Q-name, b is not in V, and

1lkg [b is a branch of 7.] ]

Let n be regular, large, and look at a suitable countable X < H,,.

Let G be Q-generic. Then X[G] < Hy[G]. Let N be the collapse of X and N|g]
the collapse of X[G]. Notice g = Glox- In N [g] there is a tree T which interprets 7 and is
part of the actual tree 7¢ in V[G].

Since b is “new”, in V there is a perfect tree of conditions g in P, all of which are

P-generic over IV and force incompatible requirements on b.
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CHAPTER 1. INTRODUCTION 13

By refining these conditions, we can assume they decide incompatible initial seg-
ments b9 of b. All these segments are in V. Since H induces a generic h over N [g]—because
Nlg] is in V—, b9 is contained in 7g, the interpretation of the name 7 in V[H].

If G4 is IP-generic and extends one of these conditions g, then bg is a Q-name for
a branch of 7, and if H is @)-generic over V[G], then bg extends b9. There are 2%0 many

incompatible b9. This contradicts -wKH in V, and we are done. [

In Chapter 3 we also introduce a strengthening of real-valued measurability, real-
valued hugeness, which implies the existence of many real-valued measurable cardinals and

in consistency strength goes even further!'!. It is consistent that ¢ is real-valued huge.

Theorem 1.32 (Woodin). If ¢ is real-valued huge, then there are no third-order definable
well-orderings of the reals. In fact, there is an uncountable \ such that V and VF20domx gre

Zf}-elementary equivalent.

These results constitute the main body of the thesis, Chapter 3.

We close this Section by mentioning a recent result due to Woodin, which in the
appropriate context provides a generic absoluteness theorem for a stronger pointclass than
%2, Notice CH is a ©? statement, and <> is ©3. An important difference between this result
;nd Theorem 1.21 is that the determinacy of the required pointclasses is not known to
follow in the presence of {gepn, from any instances of large cardinal axioms. See [W2| for

further details.

Definition 1.33. Let ¢(x1,...,2,) be a formula and let A C R. The A-Neeman game
given by ¢ is as follows:
Two players I and II alternate playing digits a, € 2, for w; many moves, to form
a set g € 2“1,
I wins iff there is a closed unbounded set C C wy such that for all a1 < -+ < an,
in C,
(Huy €,0,A) = olat, . .., ap).

Definition 1.34 (Generic Diamond). We say that generic diamond holds, $gen, iff

HvColl(ul ,¢)

w2

Hw2 522

"How much we have not explored yet (It goes well beyond the existence of Woodin cardinals. For example,

. # . . o
RY exists and AD*®" holds.) However, it seems quite reasonable to expect that it is much stronger than
anything which can be attained with current finestructural or descriptive set-theoretic techniques.
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CHAPTER 1. INTRODUCTION 14

Generic Diamond was defined by Woodin. It is consistent, being true in V¢011(w1.9),

Notice that ¢ itself is a trivial consequence of $gen.

Theorem 1.35 (Woodin). Suppose there is a proper class of supercompact cardinals. Let

'™ be the collection of all universally Baire subsets of R. Suppose for each A € T,
ZFC+ $gen P All A-Neeman Games are determined.

Then for all A € T and all ©2-formulas p(z), either ZFC+Ogen Fa @(A) or ZFC4+Ogen Fa

The pointclass I'*® is formally introduced in Definition 3.73 and the surrounding
discussion. For the definition of €2-logic, see Section 3.6. If the -conjecture holds then
Theorem 1.35 implies that in the presence of large cardinals, and under the appropriate
determinacy assumptions, then Y2-generic invariance holds with respect to extensions sat-
isfying {gen, in the sense explained after the statement of Theorem 1.21. In particular
this seems to impose a serious obstacle to the project of improving the Abraham-Shelah
Theorem 1.22 by strengthening CH to .

Even if the stated determinacy hypothesis fails, it is still believed that the Y2-
theory of the reals can be made conditionally generically invariant, the conditional berivng

{gen Or maybe even .

Conjecture 1.36 (Woodin). Suppose that there is a proper class of supercompact cardi-
nals. Suppose that $gen holds. Then the Y2-theory of the reals (with real parameters from

the ground model) is generically invariant with respect to extensions satisfying {gen-

1.2 Forcing Axioms

Woodin’s result 1.29 makes essential use of the fact that the ground model is “small” and
thus can be identified in the extension in a projective way. This gives us some leeway and,
as mentioned in Section 3.6, if the Q-conjecture holds then under appropriate large cardinal
hypotheses, Theorem 1.28 can be improved by replacing 2 with ¥2. This improvement of
Woodin is due (assuming the £2-conjecture) to a “covering” lemma, a finestructural analysis
of models of AD*,!2 and even to Lemma 1.31, which builds on the fact that appropriate

forcing axioms rule out the existence of weak Kurepa trees.

128ee Section 1.4 for the definition of ADT.
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The last chapter of the thesis provides a new twist to the well-known open question

of whether there is a forcing extension of V that collapses R,4; to Ro. We show:
Lemma 1.37. Suppose M is an inner model of GCH.

o Suppose PFA(c) holds. Then, without loss of generality, wM = wi. More precisely,
there is an inner model N, M C N, such that N | GCH, w; = w{v, and wg is

inaccessible in N iff it is inaccessible in M.

e Moreover, if PFA(c) holds and wy is a successor cardinal in M, then wy = (AT)M,

where cf(A) = w, and O3 fails in M.

e Whenever M is an inner model of GCH correctly computing Ry and such that N‘Q/ =

(AHYM | where cfV(\) = w, then
— In M the approachability property fails at X and there are no uniformly almost
disjoint sequences for X, in particular cfM()) = w.

— V is not a weakly proper forcing extension of M, and no inner model of V that
computes wy correctly satisfies CH. In particular, if PFA(c) holds then there is a
real r such that M[r] = ~CH.

— Furthermore, if vy = 8M |, then VWSy,, fails in M, and (SS:)M =NS., Su2-

(See Chapter 4 for all unexplained notation. A =ns,, B means that there is a
club C subset of wy such that ANC =BNC.)

1.3 A Review of Sharps

This Section is included because all references on sharps of general sets (not necessarily
sets of ordinals) seem unsatisfactory one way or another, and this list of facts may prove
useful as a guide to the reader here and elsewhere. Only a knowledge of the theory of 0 is

required.
Definition 1.38. Let Y be a transitive set.

1. A class of indiscernibles for L(Y'),Y (informally, for L(Y)) is a class I € ORD such
that for all @ elements of Y and all oy < -+ < a, and 81 < - < B, elements of I,
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CHAPTER 1. INTRODUCTION 16

for any (%, y1, - - -, yn) in the language of set theory,
LY) E (@ a) <« LY)Ee@p).?

2. Let ¢(t, z1, ..., zy) be a formula in the language of set theory, expanded with constant
symbols for Y and the elements of Y. A weak Skolem function for ¢ (with respect to
L(Y),Y) is the function f, : "L(Y") — L(Y') given by

. Y if L(Y) Ey is the unique z such that ¢(z, T);
fw(x) =

0 if there is no such unique z.

3. Let Y C Z C L(Y). By H(L(Y), Z) we mean the closure of Z under weak Skolem

functions.

4. Let I be a class of indiscernibles for L(Y),Y. We say that I generates L(Y") iff

H(L(Y),IUY) = L(Y).

5. We say that Y'# existsiff there is a club proper class I of indiscernibles for L(Y),Y such
that 7 UY generates L(Y') and, moreover, for any uncountable n such that Y € H,,
HL(Y), (IN7)UY) = Ly(Y).

6. We say that X" exists iff V¥ exists, where Y = TrCl (X).
Fact 1.39. If X € H,, and n is Ramsey, then Xt exists. O

The assertion “X1 exists” refers to the existence of a proper class object. Solovay’s
realization (see [Sol]) is that just as in the case of sharps for reals, this is in fact equivalent

to the existence of a set, and it is this set what we now call X*.
Definition 1.40. Let Y be transitive.

1. Let Ly denote the language of set theory augmented with constants for the elements
of Y U{Y}, and with w many other constants c¢,, n € w, (to represent the first w
indiscernibles), and closed under terms for weak Skolem functions for formulas in the

language of set theory.

13We consider the language of L(Y) to be expanded by constants P, for each a € Y U {Y'}. The natural
interpretation of P, is, of course, the set a.
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CHAPTER 1. INTRODUCTION 17

2. An EM blueprint for Y (EM stands for Ehrenfeucht-Mostowski) is the theory in Ly

of some structure (L, (Y), €, Py, in) where Y € H, or n = ORD, and

a€YU{Y}
neEw

(in : m < w) is the increasing enumeration of a set of indiscernibles for
(LW(Y)v €, Pa)aeYU{Y}-

3. Let ¥ be an EM blueprint for Y, and let o be an ordinal. By I'(X,a) we mean,

provided that it exists and is unique (up to isomorphism), a model M, such that

(a) My | T, the restriction of ¥ to the language L} without constants for the

indiscernibles.

(b) There is a set I ¢ ORDMe such that (I, ™) = (q, €) which is a set of indis-

cernibles for M.

() H Mg, IU{PM:a e YU{Y}}) =M,.
4. A set of sentences X C Ly is a remarkable character for YV iff

(a) ¥ is an EM blueprint for Y. In fact, ¥ extends “ZF +V = L(Y)”.
(b) I'(3, o) exists and is well-founded for all c.

(¢) For any term t(zo,...,Zn—1) in Ly, the sentence
“t{coy- .., cn—1) € ORD — t(co, ..., cn-1) < c”

belongs to .

(d) For any term t(zo, ..., Zm+n) in Ly, the sentence
“t(Co, R Cm+n) < €y —
t(CO, ceey Cm+n) = t(CO, ey C—1y Crmt1y « - - Cm+2n+1)”

belongs to 2.

(e) X satisfies the witness condition:

Whenever 3z p(z) € X, there is a term t all of whose constants for
indiscernibles already appear on ¢(z), and such that ¢(t) € L.

The witness condition is the key condition that remarkable characters for reals
(or more generally for sets of ordinals) satisfy automatically, because Skolem terms are
definable in L[z], € R, since L[z] has a definable well-ordering. Its importance lies in that

it allows us to prove the following basic fact:
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Lemma 1.41 (Solovay). If ¥ is a remarkable character for a transitive set Y, then

1. For all a, the sequence I® of indiscernibles of T'(, ) with (I%,eT®) = (q, €)
satisfies that for any formula p(z1,...,xy,) in the language L%, @(ci,...,cn) € X iff
(

there is a €' increasing sequence a1, . . ., an, of elements of I* such that T'(Z, a) E

o(a, ..., an).

2. For any cardinal n such that' Y € H,,

[(Z,m) = Ly(Y).

8. For all a, I® is closed unbounded in ORDI'Z®)

4. If a < B, then IP end-extends I* (seen as subsets of ORDE"Y) for any cardinal n
such that 8,Y € Hy.)

5. For anyn such thatY € Hy, H(L(Y),I"UY) = Ly(Y) < H(L(Y), U, I*UY) = L(Y).
6. Let X' be any remarkable character for Y. Then X' =X. O

Corollary 1.42 (Solovay). Let Y be transitive. Then Yt exzists iff there is a remarkable
character forY. [

Remark 1.43. In truth, Solovay only argued these results for sharps of sets of reals (or,

more precisely, for R), but the arguments for 0! really lift straightforwardly.

It follows that it makes sense to define sharps in terms of the remarkable characters

whose existence they guarantee:

Definition 1.44. Let X be a set and let Y be its transitive closure. Then X! := %, for &

the unique remarkable character for Y.

See [Sol], where the general notion of sharps is introduced, in the context of subsets
of reals.
Notice the definition of Y is absolute in the sense that if W 2 V is an outer model
and Y! € V, then
WEhHY =yt

The following is ancient, but I have been unable to find a reference:
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Fact 1.45. Let P be a poset, and suppose x! € VT, where x is a real coding a set X € V.
Then X*cV. O

It follows from the fact that Jensen’s covering lemma relativizes to all sharps, so
L[ X satisfies covering above 7, where X € H,, iff X* does not exist. Since set sized forcing
preserves a tail of the class of cardinals, if P is a poset and X ¥ exists in VP, then X! exists

inV.

Fact 1.46 (Solovay). If X! ezists, then the truth sets of L(X) and L[X] are definable.
O

The following example must be folklore, it was shown to me by Woodin. It illus-

trates that we cannot make do in the definition of Xt without the witness condition:

Recall first that after adding w; Cohen reals, no well-ordering of R belongs to

L(R). This follows immediately from Lemma 1.4.
Claim 1.47. Let V = L[u),'* and let G be Add(w, w)-generic over V. Then
1. (RYVIE egists.
2. (RHYWE NV eV.
3. ROYVIEI NV satisfies conditions 4.(a)~(d) of Definition 1.40 for (RH)Y. O

If we could dispense with the witness condition in Definition 1.40, it would follow
from the claim that R is not well-orderable by a well-ordering in L(R). This is absurd,

since in fact RLH admits a Al-well-ordering.

Remark 1.48. Of course, the same arguments generalize to larger sharp-like objects, like

daggers or pistols.

The theory of sharps is usually recalled in connection with finestructural argu-

ments. In this context, X* is usually defined as a particular kind of mouse.
Fact 1.49. Let X be a set. Then X! ezists iff there is an active X -mouse. O

There is therefore no lack of generality in using this approach. We actually obtain

quite more information than what was stated in Fact 1.49. For example, by standard

14Gee Definition 3.67 below.
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techniques a mouse as in 1.49 is unique if it exists, and so we can identify it with X*.
Moreover, for example if z € R, z! and the minimal active z-mouse share the same Turing

degree.

1.4 A quick overview of AD*

We have occasion to mention AD™ in a couple of places. This brief Section intends to provide
the relevant definitions. For a (very brief, but more complete) introduction to AD", see
[W], Section 9.1. AD" is a technical strengthening of AD, due to Hugh Woodin.

It intends to axiomatize those sentences ¢ such that whenever M C N are tran-
sitive models of ZF~° + AD with the same reals and such that every set of reals in M is
Suslin'® in N, then M k= ¢.

The assumption on “external Susliness” of the sets of reals in M guarantees that
they possess (descriptive set-theoretic) scales (in V). The intuition is that many conse-
quences of AD depend on the existence of scales for different sets of reals, but an examina-
tion of the arguments tends to show that the scales themselves need not be in the model.
This is why ADT was originally known as “AD within scales”, and some authors (most
notably, Steve Jackson) still refer to it in this way.

The usual motivation for AD™ is less technical: ADT intends to lift to models

M = L(P(R))™ the rich theory that L(R) satisfies under the assumption of ADL®),
Definition 1.50 (Woodin). Assume ZF. AD is the following theory:
1. DCg.

2. Every set of reals is co-Borel. This is to say: For all A C R there is an ordinal ¢, a

set of ordinals S, and a formula ¢(x, y) such that

A={reR: LS, 7] E ¢#(S,7)}.

3. Suppose A < O, where © :=sup{a:3f : R — a(f is onto) }. Endow A\ with the
discrete topology, and A“ := “X with the product topology. Assume 7 : \Y — w¥ is

continuous. Then for each A C R, the set 77 1“A is determined.

15A set A C R is Suslin iff it is x-Suslin for some cardinal %, which is to say that there is a tree T on w X &
whose projection is A. The cardinals & for which there is such a set A which in addition is not a-Suslin for
any « < k are called Suslin cardinals.
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Thus, AD* strengthens AD. It is usually not required that DCg be part of ADT,
but the theory of ADT is always studied within the context of ZF + DCg. Moreover, the
most important open question in the theory of determinacy, Question 1.51 below, is usually
understood as the conjunction of three questions, one for each requirement in Definition

1.50, even if the base theory in the last two questions is assumed to be ZF + DCg.
Question 1.51 (Woodin). Assume ZF. Are AD and AD™ equivalent?

It is not immediate even that L(R) = AD — ADY. This is the content of the

following results:

Theorem 1.52 (Kechris [Ke]). AssumeV = L(R) | ZF+AD. Then DCgr (and therefore
DC) holds. O

Kechris’s result is seminal in that it constitutes what can probably be construed

as the first example of (a very early form of) the core model induction.

Theorem 1.53. Assume V = L(R) = ZF + AD. Let A < © be endowed with the discreet
topology. Suppose A C w¥, n < w, and F : (w¥)™ x XY — w” is continuous. Consider the

game Gy g4 on X where I, 11 play agp, a1, ... producing & € XY, and I wins iff
Az Ve ... Qzy (F(z1, 22, ..., Ty, &) € A),

where () is either 3 if n is odd, or V if n is even (and bigger than 0). Then Gy pa is

determined. [

This is a consequence of an earlier version due to Moschovakis, and of Solovay’s
Basis Theorem. I do not know who was first to prove it. As stated, it appears as Theorem

2.17 in [Ja).

Theorem 1.54 (Woodin). Assume ZF 4+ DC. Let p be a fine measure on Py, (R). Then
A C R is co-Borel iff for some set S CTORD, Ae L(S,R). O

I think this result is still unpublished. The proof uses a Prikry-like iteration of
Vopenka-like forcings. Under AD + DC the Martin measure generates a fine measure as

required, and therefore we have:

Corollary 1.55. L(R) = AD — ADT. 0O
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That the given axiomatization of AD" has indeed succeeded in capturing the

intuitive notion it intended to is the content of the following (folklore?) result:

Theorem 1.56. Let M C N be transitive models of ZF~¢ + AD such that RM = RN and
every set of reals in M is Suslin in N. Then M = AD*. O

The following is not really an AD'-result, but AD" builds on analogues of it for
models larger than L(R):

Theorem 1.57. L(R) =3S C©(HOD = L[S]). O

The set S as in 1.57 is obtained by a version of Vopenka’s forcing due to Woodin
that can add R to HODZ®) | see [HaMaW] for a proof. Variants of this forcing are very
useful at different points during the development of the AD™ theory.

1.5 Notation

We have tried to use only standard set-theoretic notation, as in [Ku] or [J].

Our base theory is ZFC, usually augmented with large cardinals, but if it makes
for cleaner statements or proofs we do not hesitate to adopt the language of proper classes.
All these uses can be dispensed with at the expense of clumsier (first-order) renderings of
the propositions being studied.

As usual “iff” abbreviates “if and only if”. The end of a proof is indicated by an
empty box, [0, which we also include at the end of statements whose proof is omitted. The
end of a proof-within-a proof is indicated by A, and the end of proofs nested within this
level is marked by V.

If fis a function, f :  — y means that dom (f) C z (and f“(z) :={f(2): 2z €
z} Cy)

Let f be a function and let X C dom(f). By z € X — f(z) or Az € X.f(z) we
mean exactly the same as by f{y. If X is clear from context we might omit it, thus writing
x +— f(z) or Az.f(z).

For forcing notions we follow the western tradition of writing p < ¢ to indicate
that the condition p is stronger than the condition gq.

By forcing we mean set forcing, i.e., forcing by a set sized partial order (a poset).

We will emphasize the word “set” occasionally, but no class forcing will be used at all.
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The main reason is that set forcing and proper class forcing should be considered as having
different ontological status. While set forcing is always small for large cardinals sufficiently
high up in the hierarchy, and therefore essentially preserves the large cardinal structure of
the universe, class forcing may destroy it completely. For example, recall Jensen’s celebrated
coding theorem that there is a class forcing P so that the extension V¥ satisfies VF = L[r]
for some real r, and therefore V¥ admits a projective (even $11!) well-ordering of the reals,
no cardinal is strong in VT, etc. ”

Following Woodin’s usage, by Add(k, A\) we mean the forcing that adds A many
Cohen subsets of s, conditions are partial functions p : k X A — 2 with |p| < &, ordered by
p < q if and only if p O ¢. In Kunen’s notation this is Fn(x x A, 2, k). A Cohen real is an
Add(w, 1)-generic real.

By Coll(k, X) we mean the forcing that collapses X to size x, where conditions
are partial functions p : k — X with |p| < & ordered by extension. In Kunen’s notation this
is Fn(x, X, ). The Lévy collapse of ordinals smaller than A to size & is Coll(k, < A).

If P is a poset, by VF we mean the Boolean-valued model, but we follow the
standard abuse and think of it as V[G] where G is a filter P-generic over V.

A forcing PP is x-dense iff forcing with P adds no new A-sequences of ordinals for
any A < k.

For k a cardinal and A < k a regular cardinal, S§ = {a < k: cf(a) = A }.

NS, denotes the ideal of nonstationary subsets of .

For finestructure theory, we assume at least some acquaintance with [St1] and
references therein. By 01 we mean Schindler’s zero-hand-grenade, as defined in [S].

When discussing elementary embeddings j : M — N, M and N are assumed to be
transitive unless the membership relation on N is explicitly mentioned. By cp(j) we mean
the critical point of j. A model M is always assumed to be provided with its membership
relation (and, possibly, some additional structure), and we in general do not distinguish
between a structure and its underlying universe, M = (M, €,...).

For n a cardinal, H, = { X : If Y is the transitive closure of X then |Y| <n}. We
say that the elements of H,, have hereditary size less than 7. In particular, Hy, is the set of
hereditarily countable sets; we also write HC for Hy,. We assume that, as a structure, H,
comes equipped with a well-ordering. By TrCl (x) we denote the transitive closure of x.

ZFC™ is ZFC — {Power Set}, so H, = ZFC™ for all regular 7 > w.

Let M, N be proper class models of set theory with M C N. Then we call
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N an outer model of M, and M an inner model of N. By My, « an ordinal, we mean
{x € M :1k(z) < k}, where rk(z) is the set-theoretic rank of x. There is an obvious
exception to this usage, in that on occasion we refer to a sequence of models by Vg, V1, Vo, . ..
The notation M, is admittedly unfortunate, VM being perhaps more precise.

If 7 denotes a definable object of the universe (either a set or a proper class) and
M is a (transitive) model of enough set theory, by 7™ we mean the interpretation of 7

inside M. For example, if x € M then (P(z))™ = PM(z) is the unique y C M such that
MEVz(zCzx e z€y).

For T an r.e. theory (in the language of set theory), Con(T) is the usual II{
rendering of the statement claiming the consistency of T. To claim that two theories Ty
and Ty are equiconsistent over a third theory T' means that Peano Arithmetic PA proves

Con (T +T1) <= Con(T +13).
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Chapter 2

Projective Well-orderings

The goal of this Chapter is to prove a couple of results illustrating the strength
(rather, lack thereof) of the hypothesis that the universe admits a projective well-ordering.
The reader should interpret these results as saying that the lack of significant large cardinal

structure in the universe allows for pathological well-orderings.

2.1 Strong Cardinals

Our first result is a corollary of computations due to Schindler. References are provided in

the proof to follow. Theorem 2.1 was known (independently) to Schindler ([S1}).

Theorem 2.1. Suppose there is no inner model with w strong cardinals. Then there is a

set forcing extension of V with a projective well-ordering of the reals.

Proof: The idea of the proof is to obtain a model where CH holds and there is a projectively
definable wi-sequence of almost disjoint reals, from which by judicious use of almost disjoint
forcing we can define a well-ordering of R.
More carefully, we look for a model M of enough set theory containing all the reals
and such that
M = CH + There is a projective well-ordering of R.

We arrange by our use of almost disjoint forcing that the model M itself is projectively
definable, thus obtaining the desired well-ordering.

The model we will work with is K[r] = L(K U {r}), where K is the core model
and 7 is a real. We will arrange things so K[r] 2 HC (and CH holds). That K{r] or, rather,
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a sufficiently long initial segment of K[r| is projective in the codes if there are no inner
models of w strongs follows from results of Schindler ([S]), Hauser and Hjorth ([HaHj]), and
Hauser and Schindler ([HaS]).

Now we proceed to the details.

Suppose that there is no inner model with w many strong cardinals. Then 0? does
not exist!, and this implies that K does. K is definable, and generically invariant in the
sense that for any poset P, KV = K V¥ Let € be the coherent sequence of extenders of K,
& =E¥X so K = L[¢E].

Claim 2.2. Suppose W = (8 is strong, for W a universal weasel (so ORDY = ORD).
Then

W | (B is strong, as witnessed by extenders on €.

Proof: This is most likely folklore and archeology reveals variations of it in print. See,
for example, [St1] Theorem 8.14. For the case that concerns us, the result follows from
the argument given in [HaHj], Lemma 1.5, together with the realization that below 0%, the
references to the measurable {2 can be dispensed with in that proof.

Here is a brief sketch:

Since there are no inner models with a Woodin, W |= I am iterable, and there
is an embedding j : K — W. Since K =V = K, we may assume W = K, and work inside
w.

Suppose 3 is strong, and let @ > BT be a cardinal. Let K; witness the very
soundness of a sufficiently long initial segment of K, say Kl|ja. Let E be an extender
witnessing £ is strong past a, and consider the ultrapower embedding 7g : K — Ult(K, E).
In virtue of the inductive definition of K, we have that KV*¥:P)||la = K|la. Let K, =
7e(K1). Then Kj|la = Ks|a, and K is a soundness witness for K||3 but not for K||5+1.

Compare K; and K5, so they iterate to a common model K*. Let 7; : K1 — K*
and 7y : Ko — K™ be the iterations arising from the comparison. Then a standard argument

using the definability property shows that cp(m;) = 8. It follows that in the Kj-to-K* side

1O", zero-hand-grenade, was introduced in Schindler’s habilitationsschrift, published as [S], where
finestructure theory is developed (over ZFC) under the assumption that 0 does not exists. Its existence is
equivalent to the existence of indiscernibles for a proper class model with a proper class of strong cardinals.
For the benefit of the reader familiar with the theory of K “below a Woodin cardinal” & la {St1], but unfa-
miliar with [S], we explain in Section 2.2 how to modify the argument so only [St1] and the corresponding
covering lemma ([MScSt], [MSc]) are required.
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of the comparison, an extender with critical point § was used, and the agreement of K
and K5 implies that its length is greater than a.

It follows from the initial segment condition that
K, = is strong up to «, as witnessed by extenders on the EX1 sequence,

and therefore the same holds in K. In effect, let F' be the extender with cp(F) = 8 and
v(F) > a used on the Kj-to-K* side of the comparison. Then by the agreement of models
arising on iteration trees, F € EX1. The collection of < a such that (4151 <5 < a,
n = v(Fl,), FI
(EX1),. # 0 implies n* is a limit ordinal, it follows that for any such 5, F I, (rather, its

, is not of type Z ,2 and n is a successor ordinal, is cofinal in a. Since

trivial completion) is on the Kj-sequence, with index less than . A

Form now on, by strong we understand strong, as witnessed by extenders on the
sequence.

Suppose that there are exactly n strong cardinals in K. We claim that there is a
set forcing extension of the universe admitting a A}L+3—well—ordering of the reals. If V is not
closed under sharps (so, in particular, n = 0), th:;n in fact the well-ordering can be chosen
to be A3, see Section 2.2.

i From now on assume V is closed under sharps. Let § be the largest K-cardinal «

such that K = x is strong.

Claim 2.3. There is a strong limit singular cardinal X such that At = (AT)E  § < )\, and

for all kK < A, k is strong in K|\ iff k is strong in K.

Proof: By the covering lemma (Theorem 8.18 in [S], which really follows from [MScSt],
[MSc]), for any B > wa, cf(37H) > |B|. In particular, for any singular A, AT = (AT)X.
Now the result is easy. Let o(a), for o and ordinal, denote the Mitchell order of
a in K, so o(a) € ORD iff a is not strong. Let A > § be strong limit singular and closed
under oly g : Ki=8 is not strong}: We are done, once we verify that for § strong in K, the
lengths of the extenders in K|\ with critical point 3 are unbounded in A. But this is clear:
If G is strong in K, then it is strong as witnessed by extenders on £, and the argument

in Claim 2.2 shows that for any cardinal o > (87)¥, both the lengths and the indices of

2See [ScStZ] for the definition of type Z extenders, and the correct statement of the initial segment
condition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. PROJECTIVE WELL-ORDERINGS 28

extenders on & witnessing that § is < a-strong are cofinal in «. In particular, this holds for
A 80 K||A =3 is strong. A

Fix X\ as in the claim. The key to most results involving simply definable well-
orderings of the reals is to use the almost disjoint forcing technique of Solovay. This is what
we do here, in a finestructural context. First, we need a projectively definable uncountable

sequence of almost disjoint reals.

Claim 2.4. There is a set forcing extension of the universe that collapses A to w while

preserving v := At and where, moreover, HC = L,[&, A] for some A C \*.

Proof: By forcing with Coll(y,2*) if necessary, we may assume 2* = A*. It follows that
we can find A; C v such that L,[A;] = H,. Let G be Coll(w, \)-generic over V, and work
in V[G]. Let Ay Cw code G. Notice v is still a cardinal.

What should be by now a standard argument shows that HC = L,[A;, A3}, as an
easy consequence of the A™-cc of the forcing: Any name for an element of HCVCC’H(V'?A)*C‘).H(W’M

011 (v, A
appears in an initial segment of (H,)"* BT~ H, A

Call V7 the universe obtained in the claim. We apply the almost disjoint forcing
technique to an extension of V.

Claim 2.5. There is a set forcing extension of Vi preserving v(= le) where there is a real

r such that HC = L,[E, 7).

Proof: Work inside V;. In K there is a definable sequence of A\* subsets of A. Any
reasonable such sequence in fact is definable over K ||v and, moreover, for a stationary set
of v < v the same definition over K|y gives the first v-many terms of the sequence.

Let 3 be a real coding A\.3 Then in K [§] we can easily define from the K-sequence
an wi-sequence of almost disjoint reals (in the usual sense: for any s; # s2 in the sequence,
|s1 Nsal <w.)

Let A = (84 : @ <wi) be such an L, [€, §]-definable sequence of almost disjoint
reals. Recall that HC = L, [€, A].

Let Q be the usual forcing for coding A by a real, using A, namely

Q:{(,s’F) 15 € 2w andFG?w(wl)},

3Usually we only need our objects to be coded in a weak sense, namely, A codes B iff B € L(A). Here,
however, we mean that the natural identification of w with w x w maps s to a well-ordering of w in order-type
A. By a real we mean here an element of P(w).
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ordered by

§2s,
(s, F)< (s,F) < F D F and
Va € F(a € A — (dom(s) \ dom (s)) N F N sy = 0).
It is easy to see, and well known (see for example [Ku] §II.2), that Q is o-centered and that
if G is Q-generic over Vi, then r¢ = {s:3F ((s,F) € G)} € (2°)"1I¢, G is definable
from r¢ in V4[G], and for all @ € wy, a € A iff [rg N sq| < w.

Fix such a G, Q-generic over V;. We claim that V;[G] is as wanted, and that
r={2n:ne€d}U{2n+1:n € rg} serves as a witness. Namely, L, £, A] C K|r], since
§ € KJr], A is definable in K[3], and A is definable from A and rg. Therefore HC C K]|r],
since Q is ccc. Clearly, L, [€,7] € HC, and we are done. A

Recall that § < A be the largest strong cardinal of K. Let V5 be the universe
obtained in the claim, and work in V5. The following key lemma, pointed out by Schindler

([S2]), improves the complexity of the well-ordering obtained by our original argument.
Lemma 2.6. L,[€] is A} 5(s) in the codes, where s € R codes K||6.

Proof: This follows from Schindler’s arguments in [HaS|. See the comment on page 141 of

[HaS] after the proof of Theorem 3.5. A

Remark 2.7. Schindler’s result is quite impressive. Here it is, in a very general form
(There are similar statements for models with infinitely many strong cardinals, but the

computations are of course not projective in those cases.)

Theorem 2.8 (Schindler). Suppose that there is no inner model with a Woodin cardinal

and that K exists. Suppose that
va = “There are finitely many strong cardinals”.
1

Then {r € R :r codes M« va } is projective (we say va is projective in the codes?®.)
1 1

In fact, suppose

K .
HWY = ‘There are exactly n strong cardinals”.

Then
4P <4 Q iff P is an initial segment of Q.
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V . - . . K . 1 .
1. Ifw{ tis inaccessible in K, then HWY is Ay, 5 in the codes.
2. If w:‘l/ 1s a successor in K, then ny 18 é}l+3 in the codes. /A

Recall that K is generically invariant and that, by results of [HaHj], if there is an
inner model with infinitely many strong cardinals in a forcing extension, then K is already
a witness. What we did was to ensure the Theorem is applicable, starting from a more

relaxed hypothesis.

It now follows that in V3 the reals admit a A} 4(r, s)-well-ordering, where r and
s are as in the claims. Namely, K[r] = L(K U {r}) so R"? = REl'l admits a natural
well-ordering, derived from the order of constructibility (closing under terms for Godel
operations) and the natural well-ordering of K. More carefully, K[r] = K[5][A][r], but 3 is
recursive in 7 and A is easily definable from r and A, which in turn is easily definable in K[3§]
from § and a sequence of sets locally definable in K|jw;. Unfolding this construction, the
terms produced by Godel operations only require to be (hereditarily) evaluated in elements
of K|lw; and the real r. So we obtain a well-ordering by only listing those terms that
produce reals, and avoiding repetitions. Since the terms are naturally well-ordered, we only
need to see how difficult it is to identify K||w; inside K|r]. Schindler’s result tells us that

it is A} 3(s), and we are done. [

2.2 Projective Well-orderings, Revisited

We indicate how to carry out the argument of Theorem 2.1 for those readers familiar with
Steel [St1] but not with Schindler [S]. We must consider two cases, depending on whether
the universe is closed under sharps.
Case 1: There is a set X such that X" does not exist.

By Jensen’s covering lemma, there is § > sup X such that 6+ = (§+)L1X]. Force
to make § countable while preserving §* and let 7 be a real coding X (r can code a well-
ordering of w in order type J, and the characteristic function of X as a subset of 4), so

L[r]
wp =wp .

We are now done. A trivial relativization of Harrington’s Theorem 1.13 gives a

forcing extension where the reals admit a A3-well-ordering.

Case 2: For all X, X! exists.
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Then we can proceed to construct a global K model. The argument for how to
carry out this construction is due to Woodin and forms part of his technique known as “the
core model induction”. It first appeared in print in [Ha).

The idea is to exploit the local definability of K. In [St1], the background certified
model K€ is not an inner model, its height being an ordinal Q. In [St1] it is required of
Q2 to be measurable in V, but the existence of sharps and even weaker assumptions suffice.
What matters is to have at our disposal some form of “external measure”, to guarantee
the cheapo-covering argument. We give a rough sketch of the argument here, leaving aside
some (relevant) issues of iterability.

Granting the existence of sharps for all sets, let xk be a regular cardinal such that
2<F = g and let B C s code H,. We can always assume, by passing to a forcing extension
if necessary, that there is such a «. If V is closed under sharps, then so is any set forcing
extension. Hence, there is no loss of generality, and we can assume B exists.

Construe B? as the smallest B-mouse with an active extender. Let Qp denote
the critical point of the active extender in Bf. Build K° up to Qp inside L{B]. If the
construction halts, then we are done since this implies a non-tame mouse has been reached
in L[B] and therefore there are inner models with w many strong cardinals. Otherwise, the
construction succeeds. Then, starting with K¢, we can proceed to build K, which must
exist since otherwise there are inner models with w strongs. Denote KZ the outcome of
this construction. Notice ORD¥ g Qp.

Let B; C & be any other set coding H. Inside L[B;], KP' can be built up to Qp,.
Then point of these partial constructions is that they cohere: By the local definability of
K (see [St1]), KB and KP! coincide past , and by considering all the possible sets B, this
construction converges to a K-model of height x*.

Now continue, by running the same construction but starting with a larger regular
cardinal x; such that 2<% = k;.

The outcome of this inductive procedure is a global K-model. Once we have K at

our disposal, the argument given before can proceed as indicated.

2.3 The Strength of Projective Well-orderings

Theorem 2.1 is essentially best possible, as the following corollary indicates. On the other

hand, it produces boldface well-orderings, so there is an obvious question whose answer is
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still missing, see for example Question 2.12 below.
Corollary 2.9. The following theories are equiconsistent (over ZFC):
1. There are w strong cardinals.
2. There is no set forcing extension of V' with a projective well-ordering of the reals.

3. Projective absoluteness.

Proof: (Con(ZFC + 1.) = Con(ZFC+ 3.)) By unpublished results of Woodin (See [St],
Section 3, specially Corollary 3.7.) if A = sup,, kK, where k9 < K1 < ... are strong, then

projective absoluteness holds in V; = VCo1l(w:A),

(8. = 2.) Since homogeneous forcing destroys any projective well-ordering, pro-
jective absoluteness ensures that no set forcing extension of V; can have a projective well-

ordering of R.
(Con (ZFC + 2.) = Con (ZFC + 1.)) This is immediate from Theorem 2.1. [

The equivalence between &. and 1. in Corollary 2.9 was already known, and it is
the content of Hauser’s habilitationsschrift, see [Ha]. Our proof of Theorem 2.1, computing
the complexity of the well-ordering in terms of the number of strongs in K, includes an
improvement due to Schindler ([S2]) of our original computation. We thank him for allowing
us to give his sharper, and optimal, result. As mentioned before, Theorem 2.1 itself was
known (independently) to Schindler ([S1}). A much deeper property of theory 2. in the

statement of 2.9 above seems untractable with current finestructural techniques.

Question 2.10. Is it true that projective absoluteness holds iff there is no forcing extension

of V with a projective well-ordering of the reals?

The coding techniques used to prove the theorem allow for natural improvements

of the result. For example:

Fact 2.11. Assume K exists and is not closed under sharps. Then there is a (set) forcing

extension of V where the reals admit a Ai-well-ordering. O

This follows from 1.13 and the (easy) observation that if V' is closed under sharps,
then so is K.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. PROJECTIVE WELL-ORDERINGS 33

Question 2.12. Assume —0'. Is there a (set) forcing extension of V with a (lightface)
Siwell-ordering of R?

On the other hand, the complexity of the well-orderings obtained in Theorem 2.1

is in general best possible, by Woodin’s results on projective absoluteness, see [St].

2.4 Bounded Forcing Axioms

Harrington [Har] showed that MA is consistent with the existence of a Y3-well-ordering of
the reals. More precisely, there is a forcing extension of L where MA holas and whose reals
admit a well-ordering of the claimed complexity. Harrington's result is optimal in the sense
that E}%-well—orderings are incompatible with MA.

This is an immediate corollary of the following two classical results:

Theorem 2.13 (Solovay). All Z%-sets of reals are Lebesgue measurable iff for all a € R,

the set of reals random-generic over Lla] has full measure. O

Theorem 2.14 (Martin, Solovay). MAy, implies that for all a € R, the set of reals

random-generic over Lla] has full measure. 0O

On the other hand, the Lebesgue measurability of Z%—sets of reals in the context

of MA cannot be forced over L unless large cardinals are granted:

Theorem 2.15 (Shelah). Assume all 3-sets are Lebesque measurable. Then Ny is inac-

cessible from reals: NlL[a] <W; forallae R. O

There is a sense in which Harrington’s theorem is not optimal, namely the well-

ordering in [Har] is not lightface. This is not really an obstacle:

Theorem 2.16 (Friedman, see [Fr]). There is a forcing extension of L that preserves

w1 n which
1. MA holds,
2. There is a Z%—well-ordermg of the reals. O

In this Section we strengthen Harrington’s result in a different direction.

Recall:
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Definition 2.17 (SPFA(c)). The semiproper forcing axiom holds restricted to posets of
size at most c, i.e., if |P| < ¢, P is semiproper, and D C P(P) is a collection of at most X;

many dense subsets of P, then there is a D-generic filter § C P, i.e.,
VD eD(DNG+#0).

Definition 2.18. 1. The bounded semiproper forcing axiom, BSPFA, holds iff whenever
P is semiproper and D is a collection of at most N; many predense subsets of P, each

of cardinality at most N, then there is a D-generic filter § C P.

2. BSPFATT holds iff, with P, D as above, if in addition a sequence (7, : a < w;) of
P-names for stationary subsets of w; is given, then there is a D-generic filter § C P

such that for all a < wy,
(Ta)g = ={B<wi:IpeGplpe)}

is stationary in w.
Bagaria [Bag] has found useful equivalent formulations of these principles which

show plainly what they can accomplish:

Theorem 2.19 (Bagaria [Bag]). 1. BSPFA holds iff H,, <35, HszP for all semiproper
forcings P.

2. BSPFA™Y holds iff (Hy,, €,NSy,) <%, (Hu,, E,NSwl)VP for all semiproper forcings
P. O

Definition 2.20 (Woodin). ¢ 4c¢ is the following statement: Suppose S and T are sta-
tionary, co-stationary subsets of w;. Let NS, be the nonstationary ideal on w;. Let
P = P(w1)/NS,,. Then there is an a < w; such that whenever G is a P-generic filter over
V', then

SeG iff aej(),

where j : V — (Ult(V, G), €) C V[G] is the generic ultrapower embedding (and, as custom-

ary, we identify the standard part of a model with its transitive collapse.)

Definition 2.20 can be restated without mentioning the generic: Given S and T as

above, the condition on « is equivalent to

[SIns., = [ € HT)Iro(P(w1)/NS.,)
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where j is with Boolean value 1 a P(w;)/NS,,-name for the generic ultrapower embedding.
In turn, this is equivalent to stating the existence of a bijection 7 : w; — « and of

a club C C w; such that
SNC={peC:ot(r“B)eT}.

Theorem 2.21. Let L[E] be a finestructural inner model with a strong cardinal and a
measurable above but without inner models with Woodin cardinals. Then there is o forcing

extension of L|&] where the following hold:

1. SPFA(c) + BSPFA*,

2. Pac-
3. There is a L}-well-ordering of R.

Remark 2.22. That a strong cardinal suffices to obtain SPFA(c) by forcing was known
before, see [W] Remark 2.48. Originally, this was somewhat surprising, given the equivalence
between SPFA and MM. Woodin was first to show that SPFA(c) is strictly weaker than
MM(c). For example, [W], Theorem 9.73 states that MM(c) implies Projective Determinacy
and is therefore in consistency strength strictly above SPFA(¢). In fact, a strong cardinal is

much more than necessary, and we just use it here to speed up the argument.

Proof: The proof divides in a natural way into three parts: First we define for « a strong
cardinal, a revised countable support iteration P, of length « of semiproper forcings, and
show that

VP |= SPFA(c) + BSPFAT.

Second, if £ > x is measurable, we show that

VEx E vac.

This elaborates on an argument of Woodin, Lemma 10.95 of [W]. It does not follow auto-
matically from this lemma, since the forcing axiom we are assuming here is strictly weaker
than BMM. From vy ac it follows that a well-ordering of R can be easily defined from an

infinite sequence of pairwise disjoint stationary sets.
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Finally, if L[€] is as in the hypothesis of the theorem, A and v > X are in L[E]

respectively strong and measurable, and Q = (Py)*l€, then

L[€] = There is a Al-in the codes sequence (S,:n <w) of disjoint

stationary subsets of ws.

By Yi-absoluteness between L[] and L[€]%, such a sequence is still Al-definable, and by

definition of QQ the S,, are still stationary in wy. A calculation then shows that
L[€]? |= There is a T}-well-ordering of the reals,

completing the proof.

Remark 2.23. That BSPFA is strictly weaker than BMM is the content of Theorem 3.5
of [AsWel]. Corollary 2.3 of the same paper shows that the statement of [W], Lemma
10.95 can be improved by replacing the measurable with a cardinal x satisfying the Erdés
property £ — (< wi)ss. See [AsWe] for the relevant definitions. Schindler [S3] shows
that even in consistency strength BMM is strictly stronger than BSPFA. Namely, BSPFA is
equiconsistent with the existence of X;-reflecting cardinals, while BMM implies that every

X belongs to an inner model with a strong cardinal.

Now we proceed to the details:

For revised countable support (RCS) iterations, the reader is advised to consult
[DFuc].
Let x be strong. The key to define P, is an appropriate version of Laver functions

for strong or locally strong cardinals, due to Shelah and Gitik.

Lemma 2.24 (Gitik, Shelah [GSh1]). Let k be strong. Then there is £ : k — V, such
that for every x and every A > |TrCl(z)|, there is a (k, X)-extender E which is A-strong and
such that jp(€)(k) = x, where jg : V — Ult(V, E) is the ultrapower embedding given by E.
A

Actually, the result in [GSh1] is based on a notion different from that of a (k, \)-A-
strong extender: that of a (k, A)-normal ultrafilter (as defined in [Bal]) but the proof adapts
in a straightforward way.

To understand how the proof goes, it is convenient to compare with the argument

given in [L]. It is easy to see that the only use of supercompactness in that proof can be
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replaced with just strongness. Basically, Laver assumes the result fails, and picks counterex-
amples for all f : kK — V. He picks Ay minimal counterexample to f in the sense that there
is  with A\ > |TrCl(z)|, but no extender E witnessing jg(f)(x) = . Then he considers
j:V — M, where j comes from a (k, A\)-A-strong extender for A bigger than all the A\y. He
uses A-supercompactness to argue that Ay still witnesses that f does not work in M. But
all we need is that M contains enough of V, so it sees that there are no (x, As)-extenders
as required.

Steel prefers to avoid the argument by contradiction and instead arguing directly,
defining £ inductively. Such an argument is presented in [H1]. This has the disadvantage
of requiring a global choice function, but such a predicate can be added by proper class
forcing without adding any new sets.

The argument works locally, so appropriate Laver functions exist if « is only 6-
strong for some 8 > k.

Now we can apply the standard proof of the consistency of SPFA, but working
with & strong: An RCS iteration (P, : o < &) is defined, so the a'P iterand is a P,-name

Qq for a semiproper forcing such that VPe*Qa |= |P,| < Ry, and if £(a) = (P, D), where
e / is our Laver function,
e P is a Py-name for a semiproper forcing such that VP*P |= |P,| < Xy, and

e D is a P, name for a sequence of v < k dense subsets of P,

then Q, is defined as IP.
Forcing with P, is semiproper (See [DFuc|, Theorem 4.1) so w; is preserved. It
is k-cc, because at inaccessible points direct limits are taken in RCS iterations (see [J1],

Theorem 11.7.9.)

Lemma 2.25. VP~ |= SPFA(c).

Proof: The standard proof of the consistency of PFA adapts (See [J1] Theorem II1.6.7,
[FoMasSh], or [DFuc] Theorem 5.1.) There is only one point that requires elaboration, for
its reliance on supercompactness:

Let G be P,-generic over V. We need to show that

V|G] = 1f P is semiproper, |P| < k, and D is a sequence of less than
k-many dense sets, then there is a D-generic filter G C P.
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This implies K = ¢ = Ny and SPFA(¢) in V|G|, and is shown via a reflection argument. The

key is to show that if
e P is semiproper of size at most «,

e D is such a sequence of dense sets,

e j:V — M is chosen so j(£)(k) = (Px-name for P * Q, Pc-name for D) where P Q is
semiproper, and in the extension by P x @Q, |P] < ¥y, and

e j is A-strong (for A sufficiently bigger than ),

then P is still semiproper in M[G].
Jech’s argument in [J1] seems to use supercompactness in an essential way. Better,
use the characterization of semiproperness in terms of games:
Let P be a forcing. I and I play, with I moving first. Player I plays a condition
in P, and then they alternate, I playing P-names for countable ordinals, and I7

playing countable ordinals. I wins iff some condition extending the one I played
forces each name to be one of the ordinals played.

IP is semiproper iff 11 has a winning strategy.

IT has a winning strategy in V[G], and the usual reflection argument as in [Fo-
MaSh] works: The relevant embedding j : V — M can be required to witness enough
strength of x, so it lifts to an embedding j : V[G] — M[G™H] in the extension V[G][H]
(where GTH is j(P.)-generic over V), with enough agreement still persisting between
M[G™H] and VI[G] (by k-cc of P,.) This shows the winning strategy is in M[G™H]|
and therefore in M[G]—Actually, the winning strategy is a definable class but it suffices
to think of it as a function with domain, say, nice names for countable ordinals. A nice
name for a countable ordinal is defined from a sequence of antichains. Since M[G] and V[G]
can be ensured to agree on what the nice names for countable ordinals are, M |G| has II’s

winning strategy. A

Remark 2.26. The argument given shows that strength is more than is actually needed.
The function £ only needs to predict small objects, and it is easy to see (22)-strength of x

suffices.

Notice that the argument just given is soft enough that allows for additional

clauses, thus providing a method for showing the consistency of SPFA(c) together with
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several other principles. For example, these clauses can be used to implement BSPFAtt by
copying the argument in the proof of [GoSh|, Theorem 2.11, replacing “countable support
iteration” with “RCS iteration” and “proper” with “semiproper”. Since strong cardinals
are Xj-reflecting, this argument works. That in fact BSPFAT holds in the extension can
be ensured in a straightforward way by adding an additional clause to requirements (1)—(6)
in the proof of [GoSh], Theorem 2.11. So, together with the iteration and the sequences
of names M; as defined there, we also have a list of names for w;-sequences of names for
stationary;ets, and estipulate that they are met. We can order our list so each name ap-
pears stationarily often, and this guarantees the sufficiently generic filters will guess them

as desired. This shows the required result:
Lemma 2.27. VP = BSPFA*TT. A

This concludes the first part of the proof. For the second one, we only need to

show the following:

Lemma 2.28. Suppose that BSPFA holds and £ is a measurable cardinal. Then 1 4¢c holds.

Proof: This is like [W], Lemma 10.95. Let S and T be stationary, costationary subsets of
w1. We only need to verify the following: Let P be the forcing for collapsing £ to wy via a

surjection 7 : wy — & while shooting a club C' C w; such that
ITNC={aeC:1‘aeS}.

Conditions in P are closed initial segments, and the order is by extension. Then P is
semiproper.

In effect, let n > & be sufficiently large and let X < V;, be countable and contain
all relevant parameters. We can assume X Nw; € T. Since £ is measurable, X can be
expanded to a structure Y such that Y Nw; = X Nw; yet ot(Y Nk) € S. This can be easily
achieved by standard arguments. For example, by iterating the construction in Lemma 1.20
of [Lal].

With Y as above, if p is the union of a Y-generic chain of conditions (i.e., a
descending w-sequence of conditions in Y meeting every dense set in Y), then pU {(Y N
w1,0t(Y Nk))} is a condition in P which is clearly X-generic, and semiproperness follows.
By our forcing axiom, the instance of ¥ 4¢ relevant to S and T must hold. Since they were

arbitrary, we are done. A
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Since we will need this explicit definition, let us now recall how ¥ 4¢c can be used
to provide us with well-orderings of R.

Suppose (Sp : n < w) is a sequence of disjoint stationary subsets ofw;. We asso-
ciate to each ¢ C w the set Sy = [J{ Si+1:4 € = }. Notice S; is stationary-costationary.

The ordinal v, is defined from S, as the least v such that

[Sa]ns., = [v € 3(So) IrO(P(wr1)/NSw, )

where j is as before. That ~, exists is precisely what ¥ 4¢ asserts.

Notice that if x and y are distinct sets of numbers, then v, # 7, as S» #ns,,, Sy-

Now let L[€] be as in the hypothesis of the Theorem. We proceed to define in L[E]
a A:l,)-in the codes w-sequence of stationary subsets of w;. We show that this sequence is
still Al-definable in L[€]?, and argue that a X}-well-ordering of R can be obtained from it.

First we define in L{€] the sequence ( Sy, : n < w). We verify they are stationary in
wi. Since Q is a revised countable support iteration of semiproper forcings, the stationarity
of the sets S, is preserved when forcing with Q.

Club many o < w; are a local wy, o = w?‘%, where 3? = ZFC. This club exists, by
reflection, since (say) there are inaccessibles.

Define 3, as the least ordinal such that (8, > « and) Hga 49 F @ is countable.
For v € (e, Ba), let 6, o denote the order type of

{95 : v <wd < Ba, 3§ | ZFCY.

Finally, let 0, = limy g, 0,o. Since d, o decreases as -y increases, d, exists.

32a +2 collapses

T Ba
No ZFC models Sy,a =8a =0

/'\f\,y

Figure 2.1: Defining 5,
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For all o, §, = O or else it is an additively closed limit ordinal. If é, = 0, set

o € 8. If 6, = W™ where 0 < n < w, set a € Sp41. Otherwise, set a € Sp.

Claim 2.29. Each S, is stationary.

Proof: Suppose S, is not. Let C be the first club in the order of definability avoiding S,.
Let x be least such that, setting M = HS, then

o M E ZFC,
e CeM,
o Let 7 =ot{ S < wk : Mg = ZFC and C € Mg }. Then either

—7=0andn=1,or
—7r7=uw™ 0<m<w,andn=m+ 1, or else

— 7> w” and n=0.

Let X = Hull™((), so X <M, S, € X and since x was chosen so C' € M, then
C € X. Let Nx be the transitive collapse of X. Then, by w-soundness, Nx = HE for some
countable ordinal 8, Nx = ZFC and Nx is pointwise definable (without parameters). Let
a=wNX = w{v X. Then « is countable in 3% 4o and therefore 8 = f,.

By the requirement on 7 and minimality of , it follows that o € S,,. But then we

obtain a contradiction because C € X,soa e C. A

It follows from the mouse condition that (S, : n < w) is A}-in the codes: o € S,
iff there is a real = coding n and either the finite ordinal o (if @ < w) or a well-ordering
of w in order-type «, and there is a real y coding a mouse M of the appropriate kind such
that o« € M and M serves as a witness to the membership of a in S,. Equivalently, a € S,

iff for every such x and every y coding such an M, M certifies this membership.

Remark 2.30. The same argument produces in L a A} such partition. The complexity

increases once L[] admits Woodin cardinals.

Claim 2.31. (S, :n < w) is Al-in the codes in L[E]Q.

Proof: This is a consequence of £3-absoluteness between the ground model and its forcing

extension. The sequence is defined by two formulas 1y and v, where 1y and —); are 3.
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The formulas express the ¥}-predicates described above, together with the clause that the
mouse M coded by the real y is w-sound.
Absoluteness shows that the formulas still define the same sequence in the exten-

Lig)

sion. For any a < w;"'™ and any n < w, there is a mouse in L{€] witnessing o € Sy, iff there

is such a mouse in L[€]Q. Since w; is preserved in the extension, we are done. A
H

Now we use this sequence and argue from ¥ 4¢ that a A%—well—ordering of the reals

can be defined. The well-ordering is simply
e<y M <y,

where x — 7, is as defined above.

Notice that RE has size w; and is a ¥} set in L[€]Q. This is a consequence
of absoluteness, considering a good Aj}-well-ordering of R in L[€], see the proof of [W],
Theorem 3.28. By SPFA(c), we can talk about subsets of w; using this sequence and almost
disjoint forcing. We can thus define the well-ordering by saying that x < y iff (with respect
to this sequence of reals) there are codes for a club set C and for bijections m : w1 — 7.,
7y : wy — 7Yy of wy into minimal ordinals satisfying the requirements of the definitions of

vz, 7y With respect to the sequence of S;, namely,
S:NC={aeC: ot(m“a) € So}

and

SyﬂCZ‘-{OéEO: Ot(ﬂ'g“a)ES()}

and such that v, < ~,.
This is a Ii-definition. [

Remark 2.32. A careless previous version of the result made the strengthened claim that
something like the above gives a ¥}-well-ordering. However, this seems difficult to achieve
by set forcing, given that ©}-absoluteness holds: It is conceivable that for (S, :n < w) as
above and for some real z, there is 4, < 7, such that for some stationary costationary set
T,
[Sz UT]ns., = [92 € 3(S0) RO (P(wr) /NS, )-

If such is the case, it looks like the value of vy, could be lowered at least to 4, by shooting
a club that misses T". But Z%—absoluteness would seem to prevent this from happening, if

the well-ordering were Xj.
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This does not mean that a :}-well-ordering in the statement of Theorem 2.21 is
impossible, but maybe class forcing techniques are required, the problem becoming that of

adding solutions to a projective (I13) predicate via projective (II}) singletons.

Question 2.33. Is the ezistence of Li-well-orderings of R consistent with SPFA(c) +
BSPFA™T™ + 440 ?
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Chapter 3

Real-valued Measurable Cardinals

Suppose ¢ is real-valued measurable. In this Chapter we show that no well-ordering
of R belongs to L(R). However, it is consistent, but not provable, that R admits third-order
definable well-orderings. Specifically, we provide a general argument that produces a model
where ¢ is real-valued measurable, and there is a $3-well-ordering of R. A variation of this
idea gives Y3-well-orderings when applied to L[u] or, more generally, £3(I'*°),! provided
enough large cardinals exist in V, if applied to nice inner models. Recent results of Woodin
indicate how to transform this result into a proof from large cardinals of the {)-consistency
of real-valued measurability of ¢ together with the existence of ©%-definable well-orderings
of R. It follows that if the {)-conjecture is true, and large cardinals are granted, then this
statement can always be forced.

However, a strengthening of real-valued measurability (real-valued hugeness) is
introduced, shown consistent, and shown to contradict the existence of any third-order

definable well-orderings of R at all.

3.1 Basics

This Section is included in order to make this Chapter of the thesis reasonably self-contained,
and we do not claim much originality here, other than by way of exposition. The main
references for the theory of real-valued measurable cardinals are [So] and [F1], see also
[Kul] and [GSh]. For whatever modest contributions in this Section are due to us, see after

Fact 3.24. We start by defining our basic objects:

!See the discussion and definitions following the end of the proof of Theorem 3.68.
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Definition 3.1. A cardinal « is real-valued measurable, RVM(k), iff there is a x-additive
continuous? probability measure v with domain P(k). We call v a witnessing probability.
A real-valued measurable cardinal & is atomlessly measurable iff there is an atomless

witnessing probability ».
The following is due to Ulam ([U]), who also introduced the concept:

Theorem 3.2. If RVM(k), then k is either measurable or atomlessly measurable, in which

case k <c¢. O
Definition 3.3. Let v be a complete measure on some set X. Then
Ny ={YCX:py(Y)=0}
is the ideal of v-null sets.
Since add(N,) is necessarily a regular cardinal, we have the following useful fact:

Fact 3.4. Suppose RVM(k) and v is a witnessing probability. Then:

1. k =add(N,) is regular.

2. N, is an N;-saturated ideal on k. [

Remark 3.5. In fact, if & < ¢ is real-valued measurable, then & is weakly Mahlo, the '

weakly Mahlo, etc.

The following basic characterization is due to Solovay, and will be essential for our

arguments:
Theorem 3.6. RVM(k) iff there is A > w such that

yhandomy 35V S5 N, ep(j) = &,
where Randomy, is the forcing for adding A many random reals.

Specifically, Randomy is the collection of Borel subsets of 2*, modulo null sets,

where the measure ¢ is defined as follows:

2See Definition 1.1.
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e For J C ), J finite, and z € 27, the cylinder determined by J, z is
C:={zec2:azl; =2}
For such a C, define o(C) := 2711

o The cylinders generate the product topology on 2*. Extend ¢ to a Borel measure by:
¢(B) := inf{ Z(p(Cn) :B C UC"’ C, a cylinder }
n n

for B a Borel subset of 2*.

Remark 3.7. In fact, we can extend ¢ to a complete measure in the standard way. Some
presentations of Random forcing assume that we are working with this completion and not
just with its restriction to Borel sets. For the purposes of forcing, the resulting Boolean

algebras are equivalent, and we can ignore the difference.

Definition 3.8. Let B be a o-complete Boolean algebra. A ‘probability measure’ on B is a

function v : B — [0, 1] such that
1. v(a)=0iff a = 0.
2. v(1)=1.

3. v is o-additive: If {a, : n € w} is an antichain in B, so a, - a,, = 0 whenever n # m,

then
B
I/(Z an) = Zv(an).

n n

We call (B, v) a measure algebra.
Fact 3.9. 1. For oll A\, Random), is ccc. Thus Randomy is a complete Boolean algebra.

2. The map v : Randomy — [0, 1] given by v([X]) = ¢(X), where ¢ is as described above
and [X] denotes the equivalence class of the Borel subset X C 2%, is a ‘probability

measure’, so (Randomy, v) is a measure algebra. [

Remark 3.10. Given any probability space (X, P, 1), P/N, can be turned into a measure

algebra by exactly the same construction as in 2. of the fact.

More significantly,
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Fact 3.11. Any measure algebra is isomorphic (as measure algebra) to one of the form P/N,
for some probability space (X, P, 1), where P/N,, is a measure algebra with the ‘probability

measure’ described in Fact 3.9.2. 0O

This is a consequence of the so called Loomis-Sikorski theorem (due to von Neu-
mann) stating that any o-complete Boolean algebra is isomorphic (as a Boolean algebra)
to £/J for some o-algebra ¥ of subsets of some set X, and some o-complete ideal J of X.
See [Kop] and [F] for details.

Definition 3.12. 1. For B a complete Boolean algebra, the generating number of B is
7(B) := min{ | X| : X generates B (as a complete algebra) }.
2. B is T-homogeneous iff> 7(B) = 7(B[,) for any a # 0.

Fact 3.13. 1. If B is a complete Boolean algebra which is homogeneous in the forcing

sense®, then B is T-homogeneous.
2. Random) is homogeneous. Thus, it is T-homogeneous, and 7(Randomy) = \. [

Theorem 3.14 (Maharam). If B is a complete T-homogeneous measure algebra, then it

s isomorphic as a measure algebra to ezactly one Randomy up to the cardinality of A. U

Maharam’s theorem is actually much more general than we have stated, but this

particular case is all we need.

Fact 3.15. If B <Randomy (i.e., B is a complete subalgebra of Random, ), then B = Random,

for some ~v. O
Notice that, conversely, if v < A, then Random, < Random,.

Remark 3.16. The version of Fact 3.15 for Cohen forcing is false for A > wy. There are
different ways of stating this result. For example, the following is the main theorem of

[KopSh]:

Definition 3.17. For p € B\ {0}, let B[, be the Boolean algebra of elements of B below

P.
A Boolean algebra B has uniform density « iff for every nonzero condition p € B

there is a dense subset of size « in (B[,) \ {0}.

%See Definition 3.17.
“I.e., weakly homogeneous in the sense of Kunen [Ku].
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Definition 3.18. For a cardinal k, let C, be the Boolean completion of Add(w, ), the
forcing for adding x-many Cohen reals. A Boolean algebra B is a standard Cohen algebra
iff it is isomorphic to some C,.

B is a Cohen algebra iff it satisfies the countable chain condition and every B-
generic forcing extension of the universe arises from forcing with some standard Cohen

algebra.

It is easy to see that B is a Cohen algebra iff its completion is isomorphic to a

product of at most countably many standard Cohen algebras.

Theorem 3.19 (Koppelberg, Shelah [KopSh]). If k > Rg, then there is a complete
reqular subalgebra of C. of uniform density k which is not isomorphic (in the sense of

forcing) to a Cohen algebra. O

On the other hand, all such subalgebras of C,, are isomorphic to C,,, and the same
holds for k = w; (See [Kopl] or [BJZ].)

Fact 3.20. If W D V is an outer model and G (identified as a subset of \) is (Randomy )" -
generic over W, then G is (Randomy)Y -generic over V. In particular, for any P, Random)

completely embeds into P x Q, where Q is a P-name for (RandomA)VP. a
This follows for the results of [Kul], §3.
Proof of Solovay’s Theorem (<) Suppose

yRandomy L 35,7 2L N, cp(j) = k.

Let ¢ : Randomy — [0, 1] be the ‘probability measure’ associated to Randomy. In V', we want

to define a probability measure on subsets of x. Fix a name j such that
[3N (j:V =5 N,ep(j) = k)] = 1.

For A C &, let v(A) := ¢[[k € j(A)]], so v : P(k) — [0,1]. It is easy to verify that
v is as wanted®.
(=) Suppose RVM(k). Let v be a witness, and let B, = P(x)/N,. Since N, is

Ni-saturated, B, is complete, and we may assume (by reducing to a subset if necessary)

5Those uncomfortable with our use of proper classes are advised to consult [So], where the appropriate
first-order formulation and proof of Solovay’s theorem can be unearthed.
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that B, = Randomy, for some infinite A (Necessarily, for some X C k, X ¢ N,,, we must have
that P(X)/N, is T-homogeneous. By replacing v with & : Y +— v(X NY’), we may as well
assume X = k). Notice that A as chosen here is always uncountable.

Let G be B,-generic over V. Then G is essentially a V-ultrafilter on , and we
can form 7 : V — Ult(V, G) in V[G]. But the saturation of N, ensures that the ultrapower
is well founded, and therefore isomorphic to a transitive class N. Let 7 : V =, N denote
the corresponding embedding, coming from 7 via the Mostowski collapse. Then cp(j) = &,

and since B, = Randomy, we are done. [

Fact 3.21. Suppose RVM(k) and Randomy, j and N are as in Solovay’s theorem. Then
RN =R

y/Randomy

Proof: This is standard from the theory of saturated ideals: In fact, using the notation

from the theorem, if G is B,-generic over V, then V|G| E“*N C NS O

Remark 3.22. Suppose RVM(c) and v is a witness such that P(¢)/N,, is homogeneous. As
explained, it follows that P(c)/N, = Randomy for some A. It is a result of Gitik and Shelah
that A = 2°.

Solovay’s characterization allows for easy proofs of several results of the classical

theory of real-valued measurability. For example:

Corollary 3.23 (Silver). If RVM(k) then the tree property holds for k.

Proof: Suppose RVM(k), and let v be a witnessing probability. Suppose T is a k-tree.
Without loss, T = (k, <g). As usual, we will identify T or its levels T,, a < &, with the
underlying subsets of k. Our convention is that trees grow upward, so if 0 is the root of 7,
0 <7 a for any other a € T, etc. Let A\ be such that in V?284°m there is j : V — N with
cp(j) = k. Work in V/Random

8 A strong version of this result is that without loss of generality, the null ideal N, is normal, so the identity
represents « in the ultrapower N (This only simplifies notation in what follows and is not essential. See [F1]
Theorem 1G for a proof.) Given any term (7, : « < k) for a s-sequence in V[G] of elements of N, there
is in V a sequence { fo : & < k) of functions, fo : & — V for all & < k, such that [[fa]n = Ta] = 1 (This
requires some argument.) Letting g : k — V be the function given by g(8) = (fa(B8) : a < 8) for all B < k
then, in VG, [glw = §(9)() = (A3 (fa : 6 < £) [(B))(K) = 5 { fa s @ < ) [.(K) = (j(fa)(R) : @ < 5) =
([fa]n : @ < k). Hence, "N C N. In particular, PVIel(k) C N.
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Then j(T)|, = T. Let p = j(v), so p witnesses RVM(j(k)) inside N. For o < j(k),
let Ay = {fB:a <j B} Since u is j(x)-complete, (T) = 0 and there is some a € j(T)x
such that u(A4q) > 0.

Let b= {8 € T:8 <y a}, and let (b, : 7y < k) be its <g-increasing enumera-
tion. Then p(Ap,) > u(Ap,) whenever v < p. Since £ > w, for some p < x we must have
1(Ap,) = p(Ap,) for all 7 > p.

For 3 < K, b, <g B, let Bg = {y < k: f <g7v}. Notice that u(Ag) = j(v(Bg)) =
v(Bg) for any such 3. Let ¢ = v(By,). Then VB> b, either v(Bg) = ¢, or v(Bg) =0
(If 0 < v(Bg) < ¢, and B € T,, then § # by and Bg N By, = §. But then v(By,) <
v(By, \ Bg) < ¢, a contradiction.)

Let b={B:8 <gb,or (b, <y B and v(Bg) =¢€) }. Then b=»b € V is a k-branch
through 7. O

One of the main results on preservation of real-valued measurability is the follow-
ing:
Fact 3.24 (Solovay). Suppose RVM(k). Then k stays real-valued measurable after forcing

with any Randomy or more generally (by Maharam’s theorem), with any measure algebra.

a
We now argue that if P is cce, A > w, and F = Randomy, then P is still ccc in VF.
Definition 3.25. Q € V is absolutely ccc iff for all outer models W DV, W = Q is ccc.”

For example Add(w, 1), Coll(w, < wp), and any o-centered poset are absolutely
cce. The class of absolutely ccc posets is closed under finite support products and finite

8

support iterations®. The following example is slightly more interesting, and we will have

several occasions to use it.

Claim 3.26. All measure algebras, in particular all Randomy, are absolutely ccc.

Proof: Let P = (B,v) € V be a measure algebra, and let W 2 V be an outer model. Let

Wi :wfV.

"This definition takes place in MK. For a ZFC rendering, restrict the outer models to those of the form
VT for F € V a poset.

8For products, this follows from [Ku] Theorem 11.1.9. Since ccc is preserved under finite suport iterations,
the result for iterations follows easily from the definition of absolutely ccc, because if P € V is the finite

support iteration of a family <IP’a,Qa Ta< A >, then in any outer model W 2 V| P densely embeds into
the finite support iteration of the Pe,Qu, a < A.
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Suppose in W that (b, :a <w;) is an wj-antichain in B \ {0}. Then we can
assume that for some n > 0, v(bs) > < for all a. This is a contradiction: For any N € N
the sequence (b, :m < N) is in V and since the b, form an antichain, we have that

V(Z;B;KN b)) = Yomen Y(bm) > N > 1if NV is sufficiently large. O
Claim 3.27. If P is ccc and Q is absolutely ccc, then V@ =P is ccc.

Proof: Since Px Q = P+ Q = Q + P, it suffices to see that VF = Q is ccc, but this holds
by hypothesis. O

Corollary 3.28. Let F = Randomy, for A > w, and let P be ccc. Then P is ccc in VE. O
Corollary 3.29. The existence of atomlessly measurable cardinals is independent of the

existence of Suslin trees.

Proof: Let x be measurable, and suppose S is a Suslin tree. Then
1 IFrandom, RVM(c) and S is ccg,

by Corollary 3.28. Thus, V*d% = There is a Suslin tree.

The other direction is immediate from a result of Laver (see [BJ], Theorem 3.2.31.)

Namely, if MAy, holds then for any «,
yRendons L Every Aronszajn tree is special.

In particular, if x is measurable and MA holds, then VRandom< ig 4 model of RVM(c) where

there are no Suslin trees. O

Stronger versions of the following theorem can be obtained, but this suffices for

our purposes. Notice the particular case where & is measurable, so B, is trivial and G € V.

Theorem 3.30. Suppose RVM(k) and let v be such that B, = P(k)/N, is homogeneous.
Let G be B, -generic over V, and in V|G] let j : V — N be the associated generic embedding.

Then the forcing j(Random,)/Random, is isomorphic to Random;,).

Proof: In N, j(Random,) = Random,), so Random, < j(Random,), and the quotient forcing
makes sense. Let H be the canonical Random, name for the generic filter and recall that,

by definition, j(Random,)/Random, is (a Random, name for) the forcing

P = { q € j(Randomy) : g is compatible with every p € H }.
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Consequently, fix H a Random, generic over V and therefore over N, and work in V[H].

e In N[H], P = Random;,-

This is well known, and follows from {Kul], Theorem 3.13.

e In VI[H], P is a o-complete homogeneous boolean algebra.

Recall that “N C N, and therefore (by the ccc of Random,) “N[H] C N[H], from
which o-completeness in V[H] follows. Homogeneity is clear, since P is already ho-

mogeneous in N{H].

e InV[H], P is a complete measure algebra.

The ‘probability measure’ witnessing P is a measure algebra in N[H] is a ‘probability
measure’ in V[H], since N[H] is closed under w-sequences. Hence, P is a measure

algebra. It is ccc, by Claim 3.26. Completeness follows.

e In V[H], P is isomorphic to some Random, and, in fact, P = Random,;(.).

This follows now from Maharam’s theorem.

This completes the proof. O

For a generalization, see the first paragraph of the proof of Claim 3.35.

Theorem 3.30 will prove useful in the following sections, where we obtain the con-
sistency of a third-order definable well-ordering of R together with real-valued measurability
of the continuum. That we cannot improve this result in a straightforward fashion is the

content of the following result.

Theorem 3.31. If RVM(k) then no well-ordering of R belongs to L(R).

Proof: This is standard. Assume by contradiction that RVM(k) and there is ¢(z,y, z, w)
a formula in the language of L(R) such that for some real ¢t and ordinal «, the relation
between reals

r<s <= L(R)[E (s, ta)

is a well-ordering of R. The least such a is definable in L(R), so there is such a formula ¢’
all of whose parameters are reals. Let A be as above, so in V#2049 there is an embedding

j:V =5 N such that cp(j) = k and “N C N. Then

. Random
jlu@myv : LR)Y = LR)Y andom
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In particular, there is t € R such that ¢/(z,y, t) still defines a well-ordering of RV
This is impossible by Lemma 1.4 because A > wy. O

In particular, no projective (i.e., second-order in the language of arithmetic) for-
mula defines a well-ordering of the reals, if the continuum is real-valued measurable. We
close this Section with a fact that (we hope) helps to understand the form taken by the
well-orderings obtained in the following sections.

The point is that we want to codify definability computations in the language of

set theory within the language of third-order arithmetic.

Fact 3.32. Let o(Z) be a $2-formula. Then, there is v, and a transitive structure M =
ZFC™¢ such that RC M, |M|=c¢, or even “M C M, such that for all reals 7,

p(M) =  MEY(F).

Here, ZFC™¢ is a sufficiently strong fragment of ZFC.

Proof: The existence of such an M is easily seen to be equivalent to a ¥?-formula. Con-

versely, given ¢, let 1 be large enough, so for any 7,

p(f) <= VuaECCPR),Ruw,...)E e,
and we can take as M a suitable substructure of V;,. U

We have stated the fact in an informal manner, to emphasize its flexibility. For
a specific version, we can take ZFC™® to mean, in this case, ZFC™ + P(R) exists (con-

sidering a large H, instead of V;), or ZFC] i.e., ZFC with replacement restricted to

Y200

Yago-statements.

Remark 3.33. In fact, the pointclass E% can be identified by this method with the class
¥ (H+,€,Hy,, ), where H,, is seen as a parameter and therefore quantification over it is
considered bounded. This identification propagates to the classes 2 and ,(H+, €, H,,)

for n < w.

The fact and this remark motivate the general structure of the constructions that
produce ©2-well-orderings: A model needs to be produced satisfying certain first order
property ¢ (somehow related to properties of the surrounding universe). Since the model

can resemble the first-order theory of the surrounding universe as much as necessary, the
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need to satisfy ¢ is in general not the problem. The difficulty arises in trying to isolate
the model or models that we have in mind from possibly fake ones, which can be thought
of as proving a “correctness” theorem. This general framework will be illustrated with the

results of the following sections.

3.2 Woodin’s construction

We begin with a construction in essence due to Woodin, which starting with a measurable
cardinal produces a model where the cardinal is real-valued measurable, and the generic
codes a subset of the reals. This construction is the prototype of the arguments to come later
on. Working over L{u], Woodin uses it to show the consistency of real-valued measurability
of the continuum, together with a A2-well-ordering of R. We obtain the consistency of
RVM(c) together with a AZ-well-ordering of R without any restrictions in the large cardinal
structure of the universe.

Start with V |= x is measurable and 2¥ = k™, and let 7 : V — N be a witness-
ing ultrapower embedding, so 7 = jy for U a normal measure on x. Let Q = Random, and
PP be the Easton product over the inaccessibles A < s of Add(A*, 1) x Add(A T+, 1).

Force over V with IP x Q, and let Gp x Gg be generic.

Claim 3.34. P preserves the measurability of k. In fact, there is G* € V such that whenever
G is P-generic over V, G x G* is j(P)-generic over N, and we can lift j to an embedding

j1: V[G] — N[G x G*].
(Cf. [H], Lemma 2.2.4 or [C], Fact 3.1)

Proof: By elementarity, in N, j(P) = P x Py, where Piy; is the Easton product of
Add(At,1) x Add(ATH, 1) over the inaccessibles A € [k, j(k)). In N, this set is x*-closed.
But "N C N, so in fact it is x*-closed in V. Now notice that |PY (Peap)| = [(Z7E)N] =
[7(2%)] < (2%)% = 2% = kT, where the last equality holds by hypothesis. Thus, the number
of dense subsets of Py.;; which belong to N is at most kT, and a straightforward induction
lets us build (in V) a decreasing sequence of conditions which meet all of them. The filter
G* they generate is therefore Py, -generic over N.

It remains to argue that if G is P-generic over V, then G x G* is j(P)-generic over
N, which amounts to show G and G* are mutually generic. If so, j lifts to j; in the usual

way.
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But this is clear: Since N[G*] C V, if G is P-generic over V, it is also P-generic
over N[G*]. A

Notice that P is w;-closed, so RVIGP*Gel = RVIGel, In V[Gg], let A C & code a
well-ordering of R in order type k.

Let (04 : @ < K) be the increasing enumeration of the inaccessibles in V' below k.
For o < &, let Gg be the ot component of Gp, so G, is the product of an Add(8}, 1)-generic
and an Add(d1T, 1)-generic over V. Let G be the Add(d], 1)-generic, if @ € A, and the
Add(d} T, 1)-generic, if a ¢ A. Finally, let

g=1] G
a<k

Notice A is definable from g.

Claim 3.35. k = ¢ stays real-valued measurable in V[Gg[g].

Proof: By Theorem 3.30, j(Q)/Q is isomorphic to Random;(,) in V[Gg]. It follows that
in V[Gg][Gp] as well as in V[Ggl[g], 7(Q)/Q is still a complete measure algebra, since the
forcing for which g is generic is a factor of P, which is wy-closed in V and therefore wy-dense
in V[Ggq] by Easton’s Lemma, see [C], Fact 4.1. Since j(Q)/Q was homogeneous in V[Gg),
it is still homogeneous in V[Ggl(g] and in V[Gg][Gp]. We conclude that j(Q)/Q is still
isomorphic to Random;(,), by Maharam’s theorem.

Let H be j(Q)/Q-generic over V[Gg][Gp]. We will show that in V[Ggl[g][H], j
lifts to

3" ViGallg]l = N[*(Gll7*(9)]-

This amounts to define j*(Gg) and j*(g), and to check that the induced map j* is well-
defined and elementary. Once this is done, Solovay’s theorem implies the claim.

Set j*(Gg) = Go ™ H. To define j*(g), it suffices to define j*(g)x,j(x)) (s0 5*(g9) =
97 5"(9)[x,5(xy))- The intention is that the definition of j*(g) copies that of g, so we must
start by defining j*(A).

Subclaim 3.36. In V[Gp|[Ggl[H], 71 lifts to jo : V[Gp|[Gg] — N|[Gp)|G*||Ggl[H]. The
restriction of jo to V[Gg) is an embedding

js : V{Gol — N[Gq][H]

definable in V|Gg|[H].
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Proof: This is the usual way of showing that if p is measurable, then it is still real-valued

measurable in VEad%% - Ag expected, simply set

J2(76g) = J1(T)Go—Hs

for 7 a Q-name in V[Gp]. The standard arguments (see [C], Fact 2.1.) prove js is well-
defined and elementary. Since j1 extends j, js = j2lvigq) V[Gg) — N[Ggl[H] is given by
33(76q) = §(T)Go~u for 7 a Q-name in V, and is definable in V[Gg|[H] as claimed. v

Since A € V[Gq), j3(A) € V[Gg][H]. We set j*(A) = j3(A). The key observation
is that we do not really need a whole j(IP)-generic to define j*(g)(«,j(x))> Put a Prai-generic

suffices: Remember that G*, as built in Claim 3.34, is in V. We can now set

P @iy = 1] G

a€lk,j(K))
where G** is the Add(d}, 1)-generic added by G* to N, if a € j*(A), and the Add(d} ™, 1)-
generic, if a ¢ j*(A). Here, (04 : @ < j(k)) = j({dq : @ < K)) is the increasing enumeration
of the inaccessibles in N below j(&).

Extend j* to a map

3" VIGallg] = N[i™{(Go)lli*(9)]

in the usual way. Notice that j* is simply the restriction of js, as defined in Subclaim
3.36, to V[Ggllg]. This proves j* is well-defined and elementary. Finally, notice that j* is
definable in V[Gg][g][H]. This concludes the proof. A

Remark 3.37. The argument just given is quite general. It works as long as P is a
reasonably definable product of sufficiently closed small forcings. The set we called A can
code any subset of the reals in V[Gg][Gp]. By coding A inside a “subproduct” g of Gp,
we avoid having to set up any sort of book-keeping devices in the ground model in order
to define the well-ordering alongside the iteration. As a matter of fact, we do not need to
worry about defining in the ground model (as an iteration or otherwise) the forcing whose
generic is g.

Notice also that, in spite of this generality, some argument was required, since it
is not necessarily true that if W is a forcing extension of V preserving RVM(k), then any
intermediate extension V C M C W satisfies RVM(x) as well. This observation is folklore

and most likely due to Kunen.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. REAL-VALUED MEASURABLE CARDINALS 57

We will show how to obtain a ©3-well-ordering of R using the forcing just described,
as long as V = L[u]. A variation of the argument of this Section provides us with a %2-well-
ordering, without imposing any large cardinal restrictions on V. We give this argument

first.

3.3 Yi-Well-orderings

The construction from last Section is quite flexible. As a matter of illustration, let us
show how a variant of it produces a model with a A2-well-ordering of R and RVM(c). The
combinatorial tool we use to carry out our coding was first considered in [AShl], in the

presence of MA.

Theorem 3.38. If k is measurable in V and 2 = kT, then there is a forcing F of size &

such that

1lFp ¢ = k is real-valued measurable, and there is a A2 well-ordering of R.

Proof: By a preliminary forcing, if necessary, we may assume GCH holds below k.

Again, let Q = Random,. Let P be the Easton product over inaccessibles A < & of
[Tnc, Add(ATIF3™ AF3+37) where the product is inverse. Let S = P x Q, and let Gp x Gg
be S-generic over V.

As before:

If j: V — N is an ultrapower embedding by a normal measure on s, then j lifts to
j : V[Gp] — N[Gp|[G*], where if j(P) = P X Pya;, then G* € V is Pyj-generic over N.

7(Q)/Q is isomorphic to an appropriate random forcing in any intermediate model
between V[Gg|] and V; := V[Gg][Gp|, inclusive, and ¢ = x is real-valued measurable
in Vi. In fact if H is j(Q)/Q-generic over V) then, in Vi[H], j lifts to j : V3 —
N|[Gp|[G*][Gg][H], thus showing RVM(c) in V;, by Solovay’s theorem.

Similarly, in V[Gg|[H], j lifts to j : V[Gg] — N[Gg][H].
o RVIGal = RVIGallGel],

In V[Gg], let A= (74 :a < k) be a well-ordering of R. In V[Gg][Gp], define g as

follows:
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Let (d, : @ < k) enumerate in V' the inaccessibles below k. Let G, be the part of
Gp which is generic for [],,c, Add(6F3", 6313). Write G4 = [Tpeo, Galn), where Go(n)

is the part of G generic for Add(§}113%, §33+3%). Then

QZHGZa

a<w
where G = [],c., Go(n) and
Ga(n) ifn €rg,
Gan) = |
1Add(5;-l+3n,5;—3+3n) ifn ¢ To-

The same argument as in Claim 3.35 shows G* and j(A) suffice to define j*(g)
(and recall G* € V and j{A) € V[Gg|[H]). It follows as in that Claim that ¢ = & is real-
valued measurable in V[Ggl[g], and that a lifting of j to j* : V[Ggl[g] — N[Gq][H][*(g)]
definable in V' [g][Gg][H] serves as a witness.

All what remains is to see that we can “decode” the well-ordering A from g in a

Y2-way in V[Gg][g]- The forcing F is then the factor of S for which Gg X g is a generic.

The key to our coding is the following notion (see [ASh2]):

Definition 3.39. Let X be regular. The club base number for A is
min{ X CP(A\):YclubCCAIclubD e X(DCC)}.

So the club base number for X is the coinitiality of the club filter at A, ordered
under inclusion. Any collection X of clubs in A realizing the minimum above generates the
club filter at A by closing under supersets.

If \ is regular and 2* = AT, then the club base number for \ is A*, while if A*t+
Cohen subsets of A are added, their closures are clubs containing no club from the ground
model, and mutual genericity guarantees that the club base number at X is A™T+.

It follows that in V[g] the inaccessibles below x are just the dy, a < &, and the
club base number for 571437 is either 512437 or 65°™ ™) depending on whether G%(n) is
trivial or not, since the base number for (5&"11*'3" is not affected by forcing with (a subproduct
of) [1,nc., Add(S31T3™, §13+3™) for ap # on.

Maybe a more detailed argument is in order: Let A < x be inaccessible, let n < w,
and write P = Py ,, x Add(AT1H30 \+#3+30) x PAn where PPy ,, corresponds to the factors of P

that add Cohen subsets to cardinals strictly smaller than At!1+37 and PM” corresponds to
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those factors that add Cohen subsets to strictly bigger cardinals. Then PM" is sufficiently
closed that it cannot ( “by accident”) add a subset of A3 while P A,n satisfies a sufficiently
small chain condition that any club subset of AT1+3” that it adds contains a club in the
ground model. It follows that in V[Gp|, and therefore in V{g], the only club base numbers
that are affected are those that we have explicitly changed by means of g.

Finally, Gg is added by ccc forcing, so it does not affect any of the club base
numbers that concern us.

Now observe that in V[Ggq][g] we can define A, or rather the corresponding order
relation <4 on R as follows:

Let ¥(M) denote the conjunction of the following requirements:
M = ZFC™¢, M is transitive, |M| = ¢, and R C M.% Moreover,

1. M computes cofinalities correctly, that is, if A\, u € M, and thereis f : A —
i cofinal, then there is such an f € M.

2. For all C C X < ¢ club, there is D € M, D C X club, such that D C C.

3. M computes club base numbers correctly, that is, for all A < ¢, F € P(A\)M
collection of clubs, |F| < ¢, there is § € M collection of clubs such that G
is coinitial in F.19

Finally, for all » € R there is in M a unique sequence of club base numbers
starting at a weakly inaccessible!! which (in the obvious way) code r.

Notice that ¥ (M) is a II1(H+, €, H,, )-statement about M and that M does not
have any cardinals above c.
For z,y reals, let ¥(z, y) hold iff

There is M such that ¥(M) holds and in M the sequence coding z appears
before the sequence coding y.

Here we can take ZFC™ to mean ZFC™, in which case P(\)M, as in 3. above, is to
be interpreted as a definable class. This does not affect the desired complexity of .

The relation 1 just defined can be rendered X2 in a straightforward fashion. We
are done once we verify that © <4 y holds for reals z,y if and only if ¥(x,y) does. That

x <4y implies ¢¥(z,y) is easy, M = V[Gg][g]« is a witness. To see the converse just observe

%S0 ORDM > «.

10The requirement on the size of F is not essential. We just include it to ensure the universal quantifier
in the definition of the well-ordering we obtain actually ranges over bounded subsets of .

'"We do not introduce any “fake” codings this way, since the ground model satisfied GCH. The coding
could have occurred at many other places (say, starting at limit cardinals), so this is by no means essential.
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that any M witnessing 9 (z, y) is correct about cofinalities below x, and computes correctly
club base numbers of cardinals below x. The uniqueness of the coding of reals by club
base numbers ensures that even if ORD™ > ¢, no fake codings (witnessing false relations
T <4 y) may arise. Since g was defined precisely to code A using the club base numbers,

¥(x,y) implies x <4 y. This completes the proof. O

Let (¥2)* denote the class of statements about the reals expressible as a Boolean
combination of Y2-statements. As a consequence of the argument above and Solovay’s
theorem on preservation of real-valued measurability (Fact 3.24) we obtain that generic

12 is not a

invariance of (£2)T with respect to real-valued measurability of the continuum
theorem of ZFC. In effect, the statement “i defines a well-ordering of R”, for 1 as above, is a
(£3)*-statement!?, it can be made true over V as long as there are measurable cardinals in
V, and can be made false afterwards simply by adding w; many Random reals, by Corollary

1.5.

3.4 Anticoding Results

Of course, the A% above is an overkill; notice the third-order universal quantifier only ranges
over bounded subsets of k. It is natural to wonder whether we can improve the complexity
of the well-ordering to be ¥2. The problem with following a strategy similar to the one
just described is that we need to ensure correctness of the model M with respect to the
combinatorial structure of the universe that carries out the coding (the club base numbers,
for example). This level of correctness needs to be attained via projective statements. This
seems to suggest that we need to be able to code (suitable) bounded subsets of by reals. In
general (as in the arguments of [ASh1] and [ASh2], see also our proof of Theorem 2.1), this
is done by arranging that the universe satisfies something like a sufficiently strong fragment

of MA to be able to use the coding provided by almost-disjoint forcing.

12Gee after Theorem 1.21 for the definition.

131t is not quite 2, even though the relation 1 is A%: Let 1 and vz be D2-formulas such that for all
reals 7, s, ¥(r, s) <> P1(r, s) <> —b2(r, s). Then either transitivity of ¢ is not expressed in a L2-way if, say,
only 1 is used to describe 1, or else we need to include the clause that 11 (x,y) < —9a(z,y) holds for all
reals z,y.
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3.4.1 MA,,

Unfortunately, MA itself fails after adding even one random real, so it is incompatible with

real-valued measurability of the continuum.

Theorem 3.40. If RVM(k) holds and k < ¢, then there is a ccc partial order P such that

P x P is not ccc.
Corollary 3.41. If RVM(k) holds and k < ¢, then MA, fails. O

The hypothesis we display is not ideal, but there is some subtlety here, since
Prikry showed that MA is compatible with quasi-measurability of the continuum, see [F'1],

Proposition 9G. Theorem 3.40 was known to Fremlin.

Remark 3.42. Corollary 3.41 was known independently of the theorem. Arguments more

in the spirit of forcing axioms are possible: For example, if k is atomlessly measurable, then

e non(R,N) = cov(R,M) = add(M) = add(N) = p = w;. Here, N is the ideal of

Lebesgue null sets and M is the ideal of meager sets.
o b < k.

See [F1] and references within. The particular case RVM(c) = b < ¢ is due to Banach-
Kuratowski ([BaKu]).
It is well known that p is the smallest cardinal A such that MAy(o-centered) fails.

Recall that almost disjoint forcing is o-centered.

Proof of Theorem 3.40: This is a corollary of the following result of Roitman'4 ([R}):
Lemma 3.43. In V*4% there is a ccc partial order whose square is not ccc. A\

Corollary 3.44. Roitman’s result 3.48 holds in VF34°® gnd not just Viandomw,

Proof: Since Random)y/Random, = Randomy, this follows from Corollary 3.27. A

Assume RVM(k) where x < ¢, and let A be such that in VRadomx there is an

embedding j : V — N with ¢cp(j) = . By the Corollary there is in V#28dom\ 5 ccc partial

In [BJ] Theorem 3.2.30, this is erroneously attributed to Galvin. Galvin devised a general method
to construct such posets. Roitman showed that the construction works in VF, where F = Add(w,1) or
F = Random,,.
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order P whose square is not ccc. By taking Skolem hulls, we may assume |P| < N;. Since

N is closed under wi-sequences, we may assume P € N and
N EP is ccc but Px P is not.

But then, by elementarity, there is such a partial order in V. 0

Question 3.45 (Fremlin). Suppose k is atomlessly measurable. Are there two ccc posets

P and Q such that P x Q has an antichain of size k?

3.4.2 OCA

Another forcing axiom that is used to code information about subsets of reals is the Open
Coloring Axiom OCA.
Recall:

Definition 3.46. 1. Let X be a topological space. Recall that [X]? := {{z,y} C
X:z # y}. Let Ax denote the diagonal of X x X, so Ax = {(z,z):z € X }.
For A C [X]? let A= {(x,y):{x,y} € A}. An open coloring of [X]? is a partition
[X]? = KoUK, such that Kj is open in X?\ Ax. Y C X is i-homogeneous, for i € 2
(with respect to a given coloring), iff [Y]? C K.

2. The Open Coloring Axiom OCA holds iff for all separable metric spaces X, for all
open colorings [X]? = KoU K| it is either the case that

(a) There is an uncountable 0-homogeneous Y C X, or

(b) X is the union of countably many 1-homogeneous sets.

For information on OCA see for example [Fu].

The reason why OCA is considered a forcing axiom is the following result:

Definition 3.47. Let S be a set and let [S]<“ = KU K be a partition of the finite subsets
of S into two classes. The partition {Ky, K1} is cce-destructible iff there is a ccc forcing P

and a P-name X for a 0-homogeneous set:
Likp [X]<* C Ko,

such that any s € S is forced by some condition to be in X.
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Theorem 3.48 (Todoréevié). MA holds iff whenever S is an uncountable set of size < ¢
and [S]<¥ = KoUK is a ccc-destructible partition, then S can be covered by countably

many 0-homogeneous sets. [
Theorem 3.49. If RVM(k) holds and x < ¢, then OCA fails.

This is essentially due to Todoréevic.

Proof: The key to this result is the notion of an entangled linear order.

Definition 3.50. Let (X, <) be a linear order. A set A C X is w;-entangled iff for every
n < w and for every double-sequence (z¢m : € < wi,m < n) of pairwise distinct elements

of A, for every u C n there are £! < £€2 < w; such that u = {m € n: Tet o < Te2 m }
I think the following is due to Todoréevi¢ and Baumgartner, see [Fu] for a proof.
Fact 3.51. If there is an uncountable w;-entangled subset of R, then OCA fails'>. A
We are done, by [F1] Proposition 7F:

Lemma 3.52 (Todorcevié). If k is atomlessly measurable, then for every \ < k there is

an wy-entangled subset of R of size A. A
Actually, what Todoréevié¢ claims ([Tol] Theorem 2) is the following folklore result:
Lemma 3.53. If E is a set of Random reals, then F is Rj-entangled. A\

In fact, something slightly better holds. The corresponding result for VA1) jg
due to Yuasa, see [Y], Theorem 2.2 Claim (2), and can be adapted to give 3.54. I imagine

this result must be folklore by now, but I have been unable to find an explicit reference.

Lemma 3.54. VRandolo L= There is an uncountable wj-entangled subset of R.

A

Observe that Randomy = Randomy * Random,, by Maharam’s theorem. Theorem
3.49 now follows as before: For some ), in V#2990 there is an embedding j : V — N with
cp(j) = k and “* N C N, so in NN there is an uncountable wq-entangled subset of R and, by
elementarity, there is such a set also in V. By 3.51, OCA fails in V.

15This also contradicts MA,,,, thus giving yet another proof of Corollary 3.41.
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Of course, no additional appeal to Maharam’s theorem is required if instead of

Lemma 3.54, Todorcevi¢ Lemma 3.53 is used. [

These arguments should make it clear that any statement sufficiently fragile in the
sense that random forcing destroys it and sufficiently absolute in the sense that it transfers to
the generic ultrapower of the ground model, is bound to fail if there are atomless measurable
cardinals. Thus, any naive attempt to solve the problem we were facing at the end of last
Section, namely, the coding of bounded subsets of x by reals (where kK was measurable in
the ground model and turns atomlessly measurable in the extension), say by including into
the product we were calling P small factors that will do the coding of bounded subsets, runs
into the immediate difficulty that we are adding random reals by homogeneous forcing (by
the poset we were calling Q, which is just Random, ), which most likely will undo our coding,.
We would have to do the coding in such a way that no initial segment of the iteration would
suffice, but this seems difficult as well, because bounded sets of £ would most likely appear

in initial segments of the iteration.

3.4.3 Real-valued huge cardinals
A Y2 -well-ordering, on the other hand, can not be obtained for free.

Definition 3.55. A cardinal x is real-valued huge iff there is A > w such that in /Random

there exists an elementary embedding j : V =, N with ¢p(§) =  and such that /&N C N.
The following is clear:

Lemma 3.56. If  is huge, then V4% |= x = ¢ is real-valued huge.

Proof: Let j : V — M in V witness hugeness of x, so 7" M C M and cp(j) = k. Set

Q = Random,. Let G be Q-generic over V, and let H be j(Q)/Q-generic over V[G]. We
just need to verify that in V[G™H], j lifts to

j*: VIG] = M[G][H]

and that V[G™H] |= 7 M[G][H] € M[G][H]. As usual, the lifting j* is given by j*(7¢) =
J(7)g~pg. This is well-defined and elementary.

Given a sequence of names 7 = (74 : & < j(x) ) with each 7 a j(Q)-name in M, the
whole sequence 7 belongs to M[G], by the ccc of Q, and therefore ((74)g~n 1 a < j(k)) €
MI|G|[H]. From this the result follows. O
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Having shown the consistency of real-valued hugeness of the continuum, we now

point out the following observation due to Woodin:

Fact 3.57 (Woodin). Suppose ¢ is real-valued huge. Then there are no third-order definable

well-orderings of the reals.

Proof: The same argument as for L(R) in Theorem 3.31 works:

Towards contradiction, let ¢(z,y, z) be a third order formula in the language of
arithmetic, and let ¢ € R be such that for some well-ordering < of R, ¢(r, s, t) holds of reals
r,siff r < s.

Let A > w and G a Randomy-generic over V be such that in V[G] there is an
embedding j : V — N with cp(j) = ¢" and /()N C N. Then P(R)VIEl C N, since
IR| = 5(c¥) holds in N (and RN = RVI¢ since “N C N.) But this means that third order
statements in the language of arithmetic, with parameters from N, are absolute between NV
and V[G].

We are done, because by elementarity (-, -, t) would be a third-order definition of
a well-ordering of the reals in V[G], but this is impossible by the Corollary to Lemma 1.4.
O

Remark 3.58. Notice that what the proof actually shows is that if ¢ is real-valued huge
and ) is as in Definition 3.55, then V EEEJ VRandomy - where boldface indicates that real
parameters from V' are allowed. ”

The argument of Theorem 3.38 breaks down very early when trying to adapt it to
the case where x is huge. For example, the existence of the N-generic object we called G*
cannot be ensured due to the strong closure of N.

Remark 3.58 suggests the natural question of whether generic invariance of %2
with respect to “c is real-valued huge” holds. This seems somewhat delicate, since there
does not seem to be a natural counterpart to Solovay’s Fact 3.24 for preservation of real-
valued hugeness. The hypothesis is by no means intended to be optimal. For example, it
is not clear whether the natural real-valued version of P?(x)-measurability of x for k = ¢
suffices to rule out the existence of third-order definable well-orderings of R.

As expected, real-valued hugeness is a serious large cardinal assumption, strictly
stronger than real-valued measurability. Here we content ourselves with some easy obser-

vations and a remark:
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Fact 3.59. If k is real-valued huge, then there are weakly inaccessible cardinals larger than

K.

Proof: Let \ be as in Definition 3.55, and in Vo™ et 5 : V — N be the witness-
ing embedding. Then N | j(k) is real-valued measurable, so in particular N |=
j(k) is weakly inaccessible.

But V[G] E /%N C N, so j(k) is weakly inaccessible in V[G], and therefore in
V.

As usual, the proof actually shows that there are fixed point of the weakly-Mahlo

hierarchy, etc., above k. [

Theorem 3.60. If ¢ is real-valued huge, then the real-valued measurable cardinals are un-

bounded below ¢. In fact, for a witnessing probability v, v({a < ¢: RVM(a) }) = 1.

Proof: As before, let A < w be as in Definition 3.55. Let ¢ : Randomy — [0, 1] be the
‘probability measure’ associated to Randomy, fix a Randomy-generic G over V, and in V[G]
let j: V — N witness real-valued hugeness of ¢V

Let £k = ¢¥. Then RVM(k) holds in V[G], by Fact 3.24. Let v : P(x) — [0, 1]
be a witness. Notice that P(k) € N. Since ¢V¢! = j(k) is inaccessible, and therefore
§(k)¥ = j(k), then in particular # € N. Thus, N | RVM(k).

Since G was arbitrary, [« € jJ({ @ : RVM(a) }) ]| = 1, where j denotes a term for
an embedding witnessing real-valued hugeness of c.

In V, let v: P(x) — [0,1] be defined as usual by v(A) = p[[x € j(A)]. Then v is
as required.

As usual, this proof actually gives that ¢ is limit of real-valued measurables that
also concentrate on real-valued measurables that concentrate on real-valued measurables,

etc. O

Remark 3.61. Real-valued huge cardinals imply the existence of inner models for Woodin
cardinals. In the presence of measurable cardinals this is an immediate consequence of the

following result of Steel, which appears in [St1], Theorem 7.1:

Theorem 3.62 (Steel). Let Q be measurable, and let G be P-generic over V. for some
P € Vb. Suppose that in V[G] there is a transitive class M and an elementary embedding

j: V- MCV[G]
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with cp(j) = £ and such that V[G] = <IWM C M. Then the K¢-construction reaches a

non-1-small level!S. O

In fact, much more follows from this hypothesis. For example, it is straightforward
to improve the argument leading to Theorem 3.60 to a proof of the fact that there is a
‘probability measure’ v : P(c) — [0, 1] such that ¥({ @ : « is real-valued almost huge }) = 1.
Here, a cardinal x is called almost huge iff there is a A > w such that in V’22dom there is
an embedding j : V — N with ¢p(j) = & and such that VRadoms |= <ili)y ¢ N,

By replacing the measurable €2 in Steel’s result with sharps, and by a straightfor-

ward relativization, we obtain:

Corollary 3.63. Suppose ¢ is real-valued huge. Then for all bounded A C ¢, M1(A)! ezists.
O

However, the strength of real-valued hugeness of ¢ lies well beyond 3.63. Using his
technique of the core model induction, Woodin has recently obtained a significant improve-

ment:

Theorem 3.64 (Woodin). If there is a real-valued almost huge cardinal, then ADL®)
holds'”. O

Part of the argument leading to 3.64 is of a purely combinatorial nature, and we

include it here.
Lemma 3.65 (Woodin). If there is a real-valued measurable cardinal, then R¥ exists.

Remark 3.66. Suppose RVM(k). Of course we only need to consider the case where
k is atomlessly measurable. What makes 3.65 interesting is that we are not assuming
k = ¢. An easy argument shows that R! exists if RVM(c) holds: All bounded sub-
sets of H, admit sharps. Thus, if x = ¢” and A is such that VRdomy = 5 . ¢y
N witnesses real-valued measurability of k, and N C N, then all bounded sub-
sets of j(x) in N have sharps. Since *N C N, RY € N and is coded by such a bounded set.
Hence, N |= R exists, and therefore V[G] = R* exists. Since set forcing cannot create
sharps, Rf € V. In fact, since Randomy, is homogeneous, finestructural versions of this fact

follow as well. We proceed now with the proof of Lemma 3.65.

161e., Mf, the sharp for a proper class finestructural inner model with a Woodin cardinal, exists.
17As usual, by L(R*) we mean L(R U {R*}).
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Proof: Suppose x < ¢ and RVM(k). It suffices to show that ©L®) < k by [HaMaW],
Theorem 1.3.39, related to Theorem 1.57.18 If ©LR) < k. it follows from this theorem that
R¥ exists in a forcing extension of V', and therefore in V.

Let j be a generic embedding witnessing RVM(k), j : V. — N. j is defined in
YRandomy £5r some X > wiq, and RY = R . InN (Rand"mf(*))N, there is an embedding
i* . L(RY) — L(]RN(Randomj('\))N) with *[orp = id, by Lemma 1.4 and Fact 3.20. Therefore,

by elementarity of 7, there is in V#2249® guch an embedding i : L(RY) — L(R)V*™"*.

VRandom by

Notice that from the existence of both embeddings j and ¢ it follows that © must
be a fixed point of j and in particular x # OL®),

Towards a contradiction, suppose now that there is a surjection 7 : R — s with
7 € HODX®) Since i obviously fixes the reals of V, §(m)[gv is ordinal definable in L(RY),
and is a surjection of RY onto j(k). But then there is an x € RY such that j(7)(z) = &, a

contradiction: j(r)(z) = j(r(z)) =7w(z) < k. O

This Section has highlighted inherent difficulties that a proof of the consistency of
RVM(c) together with a S2-well-ordering of the reals must face.

Woodin’s result in the following Section solves them in an indirect manner, by
restricting in a very serious way the universe over which the argument takes place. The
question of whether measurability of k and GCH (or for that matter, any set of hypothe-
ses which do not carry anti-large cardinal restrictions, or smallness requirements on the
universe) suffice to force a model of RVM(c) with a 23-well-ordering of R is still open. In

Section 3.6 we discuss a possible alternative approach.

3.5 Y2-Well-orderings

Recall:

Definition 3.67. By L[u] we mean the smallest proper class inner model of the theory
ZFC + "“There exists a measurable,”

in this context, by u we always mean a witness to measurability, i.e.,

L[p] E 1 is a normal k-complete measure on some cardinal k.

18The reference is according to the version of [HaMaW] dated 9 - xii - 1999. The result states that
L(R)[H] = HOD*®[G]. Here, H is a generic enumeration of R and G, defined in terms of H, is generic over

HODE® for a poset in V@HODL(R).
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We abuse notation in the usual way, and occasionally talk about the theory V =
L{y]. This should not add any confusion to anybody comfortable enough with the inherent

tangle of syntax and semantics that characterizes set theory.

Theorem 3.68 (Woodin). If V = L[u|, then Woodin’s construction produces a model
where RVM(c) and there is a A2-well-ordering of R.

Proof: We use the notation from Section 3.2. Recall: In L[u], Q@ = Random,, where
is measurable. PP is the Easton product over the inaccessibles A below x of Add(A+,1) x
Add(A\*TH,1). Gp x Gg is P x Q-generic over L[u]. A C k = ¢ codes a well-ordering of R,
A € L[u][Gg]. We may assume the order type of this well-ordering is k. g C Gp codes A as

follows:

g:HG:w

a<wK

where G?, is either the Add(d, 1)-generic or the Add(d}™, 1)-generic added by Gp, depend-
ing on whether @ € A or not. Here, (do: & < k) is the increasing enumeration of the
inaccessibles of L{u] below k.

Let Vi = L{u][Gqllg], so R* = RLMIGel, The main result of Section 3.2, Claim
3.35, is that RVM(c) holds in V3. We claim that the well-ordering coded by A is £% in V;.
This we verify by “guessing” the ground model. What the following claim formalizes is our
intuition that any structure which resembles L[u] sufficiently close must coincide with L{u].

This resemblance we indicate in terms of a covering property.

Definition 3.69. Let N be a transitive structure which models enough set theory. We say

that N satisfies countable covering if and only if
Vo € Py (N)3re N(oc C7and N | |7| < Rp).

Claim 3.70. In Vi, suppose M is transitive, |M|=¢, M = ZFC* +V = Lu]. Let kpr be
the measurable cardinal in the sense of M, and k = ¢. Suppose kp; > ¢, M is iterable and

satisfies countable covering.
Then M, = L[p]-

The hypothesis of Claim 3.70 require some expansion. The point of the claim is
that we have identified the ground model (or, better, the part of the ground model relevant

ZFC

with the replacement schema restricted to X;gi0-statements. Obviously, much less suffices.

to our argument) in a projective fashion. To be precise, take ZFC™ to mean ZFC [21010,
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See [Do] for a careful exposition of iterability at this level. What we refer to as

KP7 is just called K in [Do], and L|u] is called there L[U].

Proof: First notice that an initial segment of L{u] itself satisfies the requirements: Iter-
ability is clear, and countable covering holds because Q is ccc and P is wy-closed.

Assume M satisfies the requirements of the Claim. Suppose M 2 L{ul., and let
a € Liuls \ M.

Notice that (provably in ZFC + “L[u] exists”), KP’ = L[u].. Hence, there is a
mouse M = Lg[ji] with a € My, where [i is a M-measure on . Since a ¢ M and M does
not move in the comparison of M with M, M D M.

We must in fact have equality or the critical sequence (of M) would violate covering
since & < k. When comparing M with M, M does not move so after iterating M w-many
times the critical points and their supremum stay below the measurable of M and must be
inaccessibles of M as M iterates past M, but this clearly contradicts countable covering.

The other containment is clear. A

We are basically done now: To require iterability of a model M as in the Claim
is a projective requirement (for example, if M =V = K DJ " jterability states that every
countable mouse required to verify V = KP7 is iterable.) Hence, to define A in a Y2-way
following the approach explained at the end of Section 3.1 it suffices to notice the following

Claim, whose proof concludes the proof of the Theorem, and this Section.

Claim 3.71. In Vi suppose 6 < k and a C &% is such that a ¢ L[u] is Add(6+,1)-generic
over L{u]. Then § is a limit or the successor of a limit cardinal 6g, and B € A iff § = dp.

It follows that A can be defined by refering to those cardinals § for which there is

a set a as above.

Proof: This follows quite easily by what is essentially the decoding argument given during
the proof of Theorem 3.38. A O

Notice essentially the same argument provides models of a Y?-well-ordering to-

gether with RVM(c), as long as the ground model is finestructural, and the iterability

9

condition is projective!®. Following this approach, granting large cardinals, and starting

with a definable finestructural model, the forcing construction from Section 3.2 produces a

191f M is the model the corresponding version of Claim 3.70 tries to identify, a fake candidate would give
rise to a club of inaccessibles below the distinguished measurable x, again violating covering.
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model of RVM(c) together with a ¥2(I'*)-well-ordering of R. Here, %2(I'*) is the pointclass
of sets of reals A such that for some projective formula ¢ and some real parameter r, A can

be defined by: For all s € R,
s€e A < 3B(¢(s,r,B)and B e€I™).

The pointclass I'° consists (under the background assumption that there are unboundedly
many Woodin cardinals) of all Universally Baire sets of reals.

The notation here is a bit tricky, and somewhat unfortunate.

Definition 3.72 (I'*). For x a cardinal, by I'* we denote the pointclass of k-Homogeneous

sets of reals.

A set A C R” is k-Homogeneous iff A = p[T] for some tree T admitting a ho-
mogeneity system consisting of xk-complete measures. This concept is due to Martin and
Kechris, see [St] for details and references; however, [St] denotes I'* by Hom,, and uses UB,
for the pointclass of k-Universally Baire sets.

A set of reals A is k-weakly Homogeneous iff A = {r: 3s((r,s) € B) } for some
r-Homogeneous set B. Let T be a tree witnessing the x-Homogeneity of B. Then T is

called k-weakly Homogeneous.

Definition 3.73 (I'*°). By ' we denote the pointclass of co-Homogeneous sets of reals,

i.e., ['° = I'", where the intersection runs over all cardinals.

It is a theorem of Martin and Solovay that if T is a k-weakly Homogeneous tree,
then there is a tree T such that T and T* are x-absolutely complementing. It follows from
Definition 3.77 that x-weakly Homogeneous sets of reals are x-Universally Baire.

It is a theorem of Woodin that if § is a Woodin cardinal and T', T* are § T-absolutely
complementing trees, then T' is < d-weakly Homogeneous, i.e., T is a-weakly Homogeneous
for all @ < 4.

An immediate corollary of these results is that (under the assumption of a proper

class of Woodin cardinals) the pointclass I'™ consists precisely of the Universally Baire sets.

3.6 Real-valued measurability and the ()-conjecture

This Section announces an improvement due to Woodin of the result in Section 3.5. We

include enough definitions to make the statement meaningful.
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Recall we have shown inherent difficulties to a straightforward attempt to obtain
(without anti-large cardinal assumptions) extensions of the universe where ¢ is real-valued
measurable and there are A%-well-orderings of R. The specific technical difficulty that
must be resolved is whether it is possible to device a coding of bounded subsets of ¢ by
reals. The usual way of obtaining such coding is by ensuring that some kind of forcing
axiom holds. However, we have shown that real-valued measurability contradicts even very
general schema toward such forcing axioms. The way this difficulty was dealt with in the
previous Section was by circumventing it, by working within a “thin” ground model which
could therefore be identified in a projective fashion in the relevant forcing extension.

Woodin’s idea is to exploit this “thinness” within a more broader context. Specif-
ically, instead of trying to establish directly that a AZ-well-ordering of R and RVM(c) can
be added by forcing, he settles for showing the Q-consistency of this assumption. We pro-
ceed now to present a brief summary of Q-logic, of (2-consistency, of its connection with the
problem of showing consistency via forcing, and close with Woodin’s result and the question

of possible generalizations.

In [W], Woodin introduces Q-logic as a strong logic extending first-order logic (in
fact, extending [-logic), and uses it to argue for a negative solution to Cantor’s continuum
problem. His argument would justify the adoption of =CH if a particular conjecture, showing
that Q-logic is as strong as possible for a wide class of statements (including CH), holds. We
advise the interested reader to consult [W] for more details. All the results and definitions
presented here, unless otherwise explicitly stated, are due to Woodin. However, it must
be pointed out that since the appearance of [W] and even [W1], the basic definitions have
changed somewhat, see [W3]2°. In particular, the definition of Q-logic we state below is
purely semantic, and corresponds to what [W1] calls 2*-logic. This move requires a slight
change in the definition of proofs in Q-logic, as we will explain.

Strong logic are defined in [W1]. We do not need this concept, but it is useful to
mention that we are only interested in it with respect to theories (in a first order language)
extending ZFC. Q-logic and first order logic are both examples of strong logics, at opposite
ends of the spectrum, first order logic being the most generous strong logic there is, in

the sense that it allows as many structures as possible, and we regard this generosity as a

20This paper is partly based on professor Woodin’s talk at the International conference in Logic and
Philosophy One Hundred Years of Rusell’s Paradox, University of Munich, Germany, June 2-5, 2001.
Professor Woodin’s talk was delivered on Tuesday, June 5, 4:30-5:30 pm.
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weakness. On the other hand, (-logic is the strongest possible logic, allowing only those
structures which pass for acceptable models of set theory, under reasonable requirements of
acceptability. For example, when first order logic allows for any structure of the form (M, E)
as a possible model, w-logic only allows those structures which “compute V,, correctly” and
B-logic those structures which are correct about well-foundedness. 2-logic goes as far in
this direction as possible, subject to natural requirements that we list below.

Recall that if M is a transitive structure, My = {z € M : rk(z) < o }. Suppose
M satisfies enough set theory, and P € M is a forcing notion. Then by Mg we mean a name
for the structure such that for any G P-generic over M, (ME)g = (M[G])a. As usual, we
abuse language and write, for example, that ME = ¢, for ¢ a sentence, iff 1 IFp Mg E .

Definition 3.74 (Q-logic). Let T' 2 ZFC and let ¢ be a sentence. Then

TkEqd
iff for all P and all A, if V¥ = T, then V¥ | ¢.

Remark 3.75. According with this definition, an Q-satisfiable sentence ¢, i.e., a sentence
¢ such that —¢ is not Q-valid, is one such that for some P and «, V¥ }= ZFC + ¢. Taking
for granted that there are enough ordinals « such that V, |= ZFC, so this discussion is not
vacuous, notice that if ¢ is 39 and 2-satisfiable, then in fact ¢ is forceable over V, i.e., for

some P, VF = ¢.

A logic (in the sense of a satisfaction relation between first order structures and first
order statements) satisfying the definition of {2-logic (and, perhaps, being more restrictive)
is said to be generically sound.

An important difference between first order logic and Q-logic is that the latter
requires a healthy large cardinal structure on the background universe for the absoluteness
requirements that allow for a reasonable study of Q-logic to hold. For this Section, let us

define:

Definition 3.76. By our Base Theory we mean
ZFC + "There is a proper class of Woodin cardinals.”

Theorem 3.77 (Generic Invariance). Assume our Base Theory. Let T 2O ZFC and let
¢ be a sentence. Then T f=q ¢ iff for allP, VP ET Eq¢. O
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Corresponding to the semantic notion of satisfiability we want to develop a syn-
tactic counterpart, Fq. Recall that proofs in first order logic can be construed as certain
trees. Similarly, for 2-logic, we develop a notion of certificate that plays this role.

The certificates in this case are more specialized, and it is better to present first the
sets in terms of which we are to define them, the Universally Baire sets. For our purposes,
we can define the Universally Baire sets directly in the way we need them, by what is usually

stated as a corollary of their standard definition:

Definition 3.78 (Feng, Magidor, Woodin [FeMaW]). A set A C w” is A-Universally
Baire, where ) is an infinite cardinal, iff there are A-absolutely complementing trees for A,

i.e., a pair T, T* of trees on w x X for some X, such that
1. A=p[T] and w* \ A = p[T7].
2. 11kp p[T) U p[T*] = w* for any forcing PP of size at most A.
A is oo-Universally Baire or, simply, Universally Baire, iff it is A-Universally Baire for all .

Notice that if A is A-Universally Baire, and T,T* P are as above, then 1 IFp
pT]Np[T*] = 0.

The Universally Baire sets generalize the Borel sets and have all the usual regu-
larity properties.

Under reasonable large cardinal assumptions, the pointclass of Universally Baire

sets is quite closed. For example:

Fact 3.79. Assume our Base Theory. Suppose A is Universally Baire. Then every set of
reals in L(A,R) is Universally Baire. O

There are somewhat cleaner ways of stating this fact.
Lemma 3.80. If every X3-set is Universally Baire, then every set has a sharp. O
In view of the lemma, we can present Fact 3.79 as the slightly stronger statement:

Fact 3.81. Assume our Base Theory. Suppose A is Universally Baire. Then A! is Univer-
sally Baire. O

Given such a set A, it makes sense to talk about its interpretation in extensions

of the universe, in what generalizes the idea of Borel codes for Borel sets.
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Definition 3.82. Let A be Universally Baire. Let P be a forcing notion, and let G be
P-generic over V. Then the interpretation Ag of A in V[G] is

Ag=|[plT]: TV and V |5 A=p[T]}.

This is the natural notion we would expect: If T, T* are A-complementing trees,
IP| < X and G is P-generic over V, then V(G| = Ag = p[T].
The certificates for {)-logic are issued in terms of universally Baire sets, and thus

we arrive at the concept of A-closed structures.

Definition 3.83. Let A C w” be Universally Baire. A transitive set M is A-closed iff for
all P € M and all P-terms 7 € M,

{peP:VEpltre Ag} e M.

Remark 3.84. In practice, countable transitive A-closed models M are those admitting
a pair of “absolutely complementing with respect to M” trees T,T* € M such that the
interpretation of A (which needs not be in M) would be in forcing extensions of M by
forcing notions in M given by the projection of T, and such that in V, p[T] C A and
p[T*] € R\ A. Notice that M-generics for forcing notions in M exist in V, since M is

countable.

Even though the official definition restricts the A-closed structures from the be-
ginning to transitive sets, it may be helpful to point out that (-logic and transitive sets,
are related in a similar fashion: An w-model (M, E) & ZFC is well-founded iff, under the
proper interpretation, it is A-closed for each II}-set A.

The following is [W], Lemma 10.143:

Theorem 3.85 (Woodin). Let M |= ZFC be transitive, and let A be Universally Baire.

Then the following are equivalent:
1. M is A-closed.
2. Suppose P € M and G is P-generic over V. Then

VIG] = Ag N M[G] € M[G]. O

With the concept of A-closed structures at hand, we are ready to define provability

in Q-logic.
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Fact 3.86. Assume our Base Theory. Let A be a Universally Baire set. Then there are

A-closed countable transitive models of ZFC. O

Definition 3.87 (Fq). Let T D ZFC be a theory, and let ¢ be a sentence. Then
Tra¢
iff there exists a Universally Baire set A such that
1. L(A,R) = AD™.
2. AY exists and is Universally Baire.

3. Whenever M is a countable, transitive, A-closed model of ZFC and o € ORD¥ is
such that M, |= T, then M, |= ¢.

See Section 1.4 and [W], Chapter 10 for an introduction to AD¥.

In [W], the notion we call here |=q was denoted ko~ and called Q*-logic. Q-logic
was defined by a slight variation of 3.87, namely the infinitary implication AT — ¢ was
required to hold in M itself, not in its initial segments. The change allows for a cleaner
version of the Q-conjecture, see 3.91. Originally, the 2-conjecture needed to be stated in
terms of IIs-statements. The other difference between the definition given here and the one
in [W] is due to the fact that 3.87 was stated in ZFC and not in our Base Theory. Under
our Base Theory, assumptions 1. and 2. hold automatically.

One of the nicest features of g is that it does not depend on the particular universe
where it is considered, at least if we restrict our attention to possible generic extensions.

This is the content of [W], Theorem 10.146:

Theorem 3.88 (Generic Invariance). Assume our Base Theory. Let T 2 ZFC and let
¢ be a sentence. Then Trq o iff for allP, VE = Thq¢. O

Theorem 3.89 (Generic Soundness). Let T' D ZFC and let ¢ be a sentence. Suppose
Tra¢. ThenT E=q ¢. O

Remark 3.90. The previous definition of -q required the background assumption of our
Base Theory in order for Theorem 3.89 to hold. Notice with the new definition it is stated
as a ZFC result.
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The Q-conjecture is the statement that g is the notion of provability associated

to [=q in the sense that the completeness theorem for (2-logic holds.

Conjecture 3.91 (Q-Conjecture). Assume our Base Theory and let ¢ be a sentence.

Then ZFC =q ¢ iff ZFCrq ¢.2!

Woodin has shown that the Q-conjecture is true unless (in a precise sense) there
are large cardinal hypothesis implying a strong failure of iterability. For example, we have
the following results. For the definition of the Weakly Homogeneous Iteration Hypothesis
WHIH we refer the reader to {W], Definition 10.4:

Lemma 3.92. Let M be a finestructural inner model of our Base Theory. Then WHIH
holds in M. U

Theorem 3.93. Assume our Base Theory. Suppose WHIH holds. Then the Q-Conjecture
holds in V. [ '

Remark 3.94. Since the publication of [W], a cleaner description of large cardinal axioms
and iterability conditions within this context has been developed in unpublished work by
Hugh Woodin, see [W1].

Definition 3.95 (Q-consistency). Assume our Base Theory. Let T O ZFC and let ¢
be a sentence. Then ¢ is Q-consistent relative to T (and if T = ZFC, we just say ¢ is
Q-consistent) iff for any Universally Baire set A there is a countable transitive model M of

T + ¢ which is A-closed.

Hence, at least as far as we can see nowadays, in order to prove that a proper
class model of a 3s-sentence ¢ can be achieved (from large cardinals) by forcing, it suffices
to show that for any Universally Baire set A, ¢ holds in an appropriate A-closed model M
of ZFC. The intention of this comment is that it is not the same to prove that a sentence
¢ is forceable from an inner model than from the ground model itself. After all, ¢ may
hold in forcing extensions of an inner model because that model is not sufficiently correct.
For example, recall our results in Chapter 2. However, if the 2-conjecture holds, and ¢ is

Q-consistent, then in fact ¢ can be forced over V.

21The stronger version of the conjecture asserting that T |=q ¢ iff T'Fq ¢ holds for all theories T and
sentences ¢ under the assumption of our Base Theory is expected to follow from the stated version.
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Notice that any statement of the form Ja (V, = ¢), where ¢ is a sentence, is o,
and any statement of the form Vo (V, = ¢ = V,, |= 9), for ¢ and v sentences, is II;. The

following follows immediately:

Fact 3.96. The statement "RVM(c)+ There is a A2-well-ordering of R” can be rendered in
aAg-way. O

The reader should appreciate by now how powerful the €-conjecture is, since
the witnesses to -consistency of a sentence ¢ can be “finestructural-like” models, their
finestructural features may be used in essential ways to establish the validity of ¢, and
nonetheless we can conclude that ¢ can be forced over the universe, without the need of
any finestructural of anti-large cardinal requirements.

Since we do not know how to force a A2-well-ordering of the reals together with
RVM(c), unless we have some nice control over the ground model itself, it was natural to
attempt a proof of the Q-consistency of this assumption. Woodin has succeeded in this

attempt, and we close this Chapter with his result and a few comments.

Theorem 3.97 (Woodin). Assume our Base Theory. Then it is Q-consistent that ¢ is

real-valued measurable and there is a S2-well-ordering of R. O

Even an outline of the argument would require a serious detour through AD*. The
idea is to use the large cardinal assumption to produce, given a Universally Baire set A,
A-closed and sufficiently “finestructure-like” inner models of strong versions®? of AD™ over
which forcing with P,x produces ZFC-models with a distinguished measurable cardinal and
satisfying a strong enough fragment of PFA(c) to ensure Lemma 1.31 holds after forcing as
in Section 3.2. This provides us, combined with the finestructural features of the ground
model, with an appropriate covering argument that can be used in place of Claim 3.70 to
obtain the desired X%-definition. The ground model can in fact be chosen so the forcing
extension itself is A-closed, and this gives the result. The finestructural details, however,

involve a new mouse hierarchy due to Woodin which remains unpublished?3.

%2These models have the form Lr(R, 11}, where p is a normal fine measure on P,,, (R) and I is a particular
closure operator which also plays the role of the tree for £? inside the model.

BVery near to the deadline for the submission of this manuscript, Woodin has found a different proof
which makes most of the outline above outdated. The new argument avoids the use of the sealing Lemma
1.31 and any appeal to the new finestructural hierarchy, and applies to a wider range of situations, for
example, to the category version of real-valued measurability (x has the property this version entails iff for
some A > wy, VWA = 35 . vV N cp(j) = k) where Cohen reals and therefore Suslin trees are added
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It follows immediately that granting large cardinals, if the {2-conjecture holds,
then the statement shown in 3.97 to be 2-consistent can actually be forced. The following,

however, remains open (from any large cardinal assumptions:)

Question 3.98. Assume « is measurable and GCH holds. Is there a forcing extension where

K = ¢ is real-valued measurable, and there is a A3-well-ordering of R?

Remark 3.99. In the statement of the {2-conjecture, our Base Theory seems necessary.
Otherwise, Woodin has shown that we cannot ensure that the conjecture holds even if the
pointclass of Universally Baire sets possesses strong closure properties and the universe
has a sufficiently rich large cardinal structure shy from the existence of Woodin cardinals.
Specifically, the following holds ([W3]):

Theorem 3.100 (Woodin). Suppose there is a proper class of inaccessible limits of Woodin

cardinals. Then there is an inner model N such that

N = ZFC+ “ There is a proper class of inaccessible limits

of Woodin cardinals ”

and such that for all kK < &, where § is the least Woodin of N, if k is strongly inaccessible
in N then in N, the following hold:

1. O =q There are no Woodin cardinals,
2. O Fq There are no Woodin cardinals,

3. For every Universally Baire set A, A¥ exists and is Universally Baire, and L(A,R) k=
ADT. O

to the model, so the sealing property actually fails. In the new proof, Qmax is used instead of Pmax and
factoring properties of the generic embeddings derived from forcing with the nonstationary ideal replace the
use of Lemma 1.31.
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Chapter 4

Forcing Axioms and Inner Models
of GCH

Assume PFA(c), and let M be an inner model of GCH. In this Chapter we inves-
tigate the consequences of assuming that N¥ is a successor cardinal in M. This is believed
to be impossible, and in particular relates to a well-known conjecture due to Cummings on

collapsing successors of singulars.

4.1 Introduction

The results we present here grew out of two seemingly unrelated questions:

Question 4.1 (Woodin). Suppose MM holds and M is an inner model of GCH. Must Ry

be inaccessible in M ?

Question 4.2. Are there any (consistent) assumptions under which there is a forcing ez-

tension of V that collapses N,,11 to Na?

4.1.1 Question 4.1

Essentially, we only know one argument to show the consistency of forcing axioms like PFA
or MM. For example, for PFA (Baumgartner, Shelah. See [Sh1] or [J1] for a detailed proof):

e We start with a large cardinal « (specifically, s is supercompact.)

e We iterate proper forcings ensuring that the final product is
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— Proper (thus, ®; is preserved; this is ensured by using countable support),

— k-cc (so k and larger cardinals are preserved),
and

e The forcings used in the iteration are general enough to guarantee (by a reflection
argument) that the final model satisfies the desired forcing axiom (this is ensured by

careful bookkeeping, via a Laver function.)

When this method is carried out, we obtain a model W where
e PFA holds,
e ¥ =XV, and
o =Ny,

The method is flexible enough to allow for some variations:

e SPFA = MM is obtained by (exactly) the same argument, using semiproper forcings,

and revised countable support. (Foreman, Magidor, Shelah [FoMaSh|)

e Starting with a supercompact limit of supercompacts, a variant of this method allows

for a model of MM where Woodin’s Pp,x-axiom (*) fails. (Larson [La])

e Starting with a strong cardinal, the method provides (via an appropriate version of
Laver functions for strong cardinals) a model of SPFA(c). (Woodin [W]. The details

can be found in the proof of the result mentioned below, our Theorem 2.21.)

e Starting from finestructural models for strong cardinals, the method shows that

SPFA(c) is consistent with the existence of £i-well-orderings of the reals.

e Bounded fragments of MM have been deduced from reflecting cardinals. (Todorcevié
[To2])

However, all these, and similar results, are obtained by what in essence is still the
original argument for PFA.
Is this an indication of our limited understanding of forcing axioms? Or rather,

does our ignorance reflect a deeper underlying reason? This apparent lack of understanding
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improves a little, but not significantly, when we restrict our attention to bounded fragments,
like MM(c): Except for the usual iteration, Woodin’s Ppax techniques have obtained this
forcing axiom by forcing over AD™ models.

What we try to suggest here is that there might be a rich structure underneath,
and the results we present might be the first steps toward its discovery.

Forcing axioms are in general quite fragile. For example, MM is destroyed by

addition of a single Cohen real, and we cannot recover it without collapsing ws.

Fact 4.3 (Velickovié [Ve]). If MM holds and N is an inner model such that w} = ws,
then P(w1) CN. 0O

Corollary 4.4. Suppose M = MM and r € P(w1) \ M. Let N be an outer model of M|r]
such that N = MM. Then w} > wi?.

Proof: That w)! < w)’ is immediate from Velickovié’s result.
If wY = wM, then cfN(w)) = wl¥ by Theorem 4.9 below. But MM implies
2%l = wy, and therefore a cofinal set of levels of (2<“2)M is a weak Kurepa tree in V,

contradicting Baumgartner’s result [Ba]. O

Question 4.5. Can we recover PFA after adding a Cohen real to V without collapsing wq ?

Is there an essentially different technique for producing extensions of V satisfying
MM? We cannot begin with a model M of GCH unless Xo™ < Ry, by Velickovié’s result. In
this Chapter, we begin to explore how little leeway we actually have, at least if our original
model M satisfies GCH.

We show that if MM or even weak variants of this forcing axiom hold then V
cannot be a weakly proper forcing extension of an inner model M of GCH where wy is a
successor cardinal. In fact, we show that if such a model M exists at all, then it exhibits a
highly unlikely combinatorial structure. We expect that the scheme described above is in
essence the only way of obtaining models of strong forcing axioms, which would provide a
satisfactory explanation for the difficulty of obtaining a model like M. As mentioned above,
Woodin’s Pyax forcing and its variants show that the state of affairs is more complicated for
the bounded versions of these axioms (See [W].) However, we expect that the same results
carry over to this situation: Under AD™, models like L(R)Pmax are forcing extensions of
ZFC-models like HODY®)_ If V is one of these models, then wy is indeed a large cardinal

in HODX(®)
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4.1.2 Question 4.2

Question 4.2 is a particular instance of the more general problem of under what circum-
stances it is possible to collapse a singular cardinal while preserving its successor.

It is expected that the answer to 4.2 is no.

Conjecture 4.6 (Cummings [Cu]). Assume N C W are inner models, p is a cardinal
of N, and (u™)V is a cardinal of W. Then W |= cf(|u|) = cf(u).

Observe that by Konig’s lemma, if the question has a positive answer, in the
resulting model CH must fail, since Nkfo > Na.

We will show that if PFA(c) holds and there is a model M as discussed above, then
Question 4.2 turns out to have a positive answer after all. Besides this situation, I know
of only one argument which could perhaps provide such an outcome. I think it is due to
Cummings [Cu], and it involves the following instance of Chang’s conjecture, which is still

open:
Question 4.7. Is it consistent that (Ry41, Ry) = (Re,Ry)?

In detail, this partition relation asserts that whenever M = (M,R,...) is a
structure in a countable language such that |M| = R,4+; and |R| = R, there is N =
(N,RNN,...) <M such that |[N| =Ry and |[N N R| = N;.

As observed by Cummings, if this instance of Chang’s conjecture is consistent

(with the existence of a Woodin cardinal), then
S= {X g Nw+1 : Ot(X) - NQ}

is stationary, and forcing with the Stationary Tower below S gives a model where Nx 41 has
been collapsed to Ns.

Notice that by an easy argument, again using Konig’s lemma, if (X,41,N,) —
(Ng, 8y) then CH fails.

4.2 w}/ in inner models of GCH

Throughout this Chapter, unless explicitly stated, all the inner models we consider are
models of choice.
From now on, assume PFA(c) holds and fix an inner model M of GCH. We show

here that in addition we can assume that M computes N; correctly.
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Claim 4.8. Assume PFA(c), and let M = GCH be an inner model. Then, without loss of
generality, wM = w}/ . More carefully, there is an inner model N with M C N C V such

that N |= GCH, wl¥ = w!, and wy is inaccessible in N iff it is inaccessible in M.

Proof: Let k = w), and P = Coll(w, < k). Then P € M and PP is ccc.
The following is contained in [Sh], Lemma VII.4.9:

Theorem 4.9 (Shelah). Suppose N C W are inner models and u is a regular cardinal of

N.

Suppose (uT)V is a cardinal of W. Then W k= cf(|u|) = cf(n). A

Shelah’s Theorem 4.9 is the key to prove the following:
Lemma 4.10. Suppose wy is a successor in M, say wé’ = (/\+)M. Then A is singular in
M.

Proof: By Shelah’s result, it suffices to prove that cf(A) # w; in V.

Claim 4.11. cf()\) = w.

Proof: Proceed by contradiction, as in the last paragraph of the proof of Corollary 4.4.
v A

The argument splits now into two cases, according to whether wj is inaccessible

in M or not.

If wy = (A*)M then by the lemma X is singular, thus limit, in M. In particular,
it is bigger than (x*)M. Otherwise, wy is inaccessible in M. In both cases, it is certainly
bigger than (k)M = |P(P)|M, so |PM(P)| = Ry. By MAy, there is a P-generic G over M.
In M[G], GCH holds, w{VI[G} = w1, and if w) = (AT)M then ) is preserved since P is s-cc

inM. O

In view of the claim, from now on we assume in addition that w} = w}, that X is
a cardinal of M, and that w) = (AT)M. By Claim 4.11, ¢fV()\) = w. By Lemma 4.10, \ is

singular in M.

Remark 4.12. At the cost of assuming a stronger forcing axiom, there is a proof of Lemma
4.10 that avoids Shelah’s result: Assume PFA. If X is regular in M, then M = A<} = X, by
GCH. By Specker’s theorem [Sp], in M there is a special A*-tree. In particular, this is an
Ro-Aronszajn tree in V. This contradicts PFA, by Todoréevié’s result [To] (See also [To2].)
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From this proof we have:
Corollary 4.13. If PFA holds, then M = There are no A'T-special trees. 0O

We will revisit Theorem 4.9 in the next Section.

4.3 Almost Disjoint Sequences

The goal of this Section is to show that c¢f(\) = w also holds in M.

In fact we do not require a forcing axiom in V' and instead only assume that M =
GCH, wY = wM, and wy = (AT)M, for X a singular cardinal in M such that cf¥()\) = w, so
cf(X) < cf(JA]). Notice that this is precisely the kind of situation Cummings’s conjecture

4.6 indicates is impossible.
Lemma 4.14. M |= cf()\) = w.

For this we build on results of Dzamonja and Shelah (see [Sh] and [DzSh}).
Definition 4.15. Let s be a cardinal.

1. A uniformly almost disjoint sequence for  is a sequence (A, : @ < kT ) of unbounded

subsets of x for which there are functions ( fg: 3 < k1) such that for all 8 < k*

o fg: 08— K, and

o (Ax\ fo(a) : a < @) is a sequence of pairwise disjoint sets.
2. ADS, holds iff there is a uniformly almost disjoint sequence for .

Lemma 4.16 (Shelah [Sh]). If N C W are inner models, p is a cardinal of N, W =
cf(|u|) # cf(u), and ADS,, holds in N, then (u+)N is not a cardinal of W. O

Corollary 4.17. M |= ADS) fails. 0O

Shelah ([Sh], Lemma VII.4.9.) also shows that ADS,, holds if x is regular or if [J,
holds. Namely, suppose p is singular, and fix an increasing sequence of regular cardinals

cofinal in p, (i : 4 € cf(p)). Let (Cy : @ < pt) be a O,-sequence, i.e., for all a < u™,
e C, C ais club,

e V3 € acc(Cy) (Cp = BNC,), and
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e ot(Cy) < p.

Inductively define (gq:a < pt) so go € ], for each o < u*, the sequence is <*-

increasing, where <* is the eventual domination relation:

f<rg <= 3ivYi>i(f(5) <9()),

and if & € Cg and |Cg| < ;, then go(%) < gs(4).
Set A, = ran(gy). Then (A, : o < p™) is a uniformly almost disjoint sequence

for u.

Cummings, Foreman and Magidor [CuFoMa] improve Shelah’s result by showing
that (I}, suffices. Here we notice as an immediate corollary of results of [DzSh| that ZFC

suffices to show ADS,, holds for many singular cardinals .

Definition 4.18. Let 7 be an ordinal and S be a set of ordinals. Then S admits squares

type-bounded by 7 iff there is a sequence {Cy : @ € S) such that for all a € S:
o C, CanSisclosed in a. It is unbounded in « if « is limit.
o ot(Cy) < 7.
e For all 8 € acc(Cy), Cg = Ca N B.

Theorem 4.19 (Dzamonja and Shelah [DzSh]). Suppose that u is singular, v = u™*,
and w < cf(k) = Kk < p is such that cf (P (), C) = p. Then

{a<v:cl(a) <k}
is the union of u sets each of which admits squares type-bounded by k*. O

Corollary 4.20. Suppose p is singular, w < cf(k) = k < p, and cf (Py+ (1), C) = p. Then
ADS,, holds.

Proof: A trivial modification of Shelah’s argument works. Rather than a sequence of
functions indexed by all ordinals below ut, build a sequence indexed by a set admitting

squares. [l

Proof of Lemma 4.14: Recall that A is singular in M. If the lemma fails then, since
cf(\) = w in V, we must have M = cf(\) > wy (recall that wf = w]M). By GCH,
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cf

F Ry

Figure 4.1: M CV, M |= GCH, RV = RM RY = AH)M V(N =w

M = cf((PNZM(A), C) = A. Then ADS holds in M, and by Shelah’s result (AT) is not a

cardinal of V, contradiction. [

The argument of course applies to much more general situations than the one

concerning us. In particular, no appeal to forcing axioms was made throughout this Section.

4.4 Good points

In this Section we build on results of Cummings, Foreman and Magidor (see [FoMa] and

[Cu]) to add to the main lemma of Section 4.3. Our main result is':

Lemma 4.21. M |= The approachability property fails at A. In fact, if A=
N,, then VWS, fails.

This is contained in essentially known results, as the reader will appreciate from
the argument to follow. We could not find an easy to trace proof in the literature, so we
are including a sketch here. In fact, we obtain more than this. We try to be reasonably

self-contained.

Definition 4.22. Let k > cf(k). A scale of length % for x (or, simply, a scale for k)
is a pair (R, f) such that K = (k; :¢ € cf(k)) is a strictly increasing sequence of regular
cardinals cofinal in  and ( fo : @ < kT) is a sequence of functions in []; x; which is strictly
increasing and cofinal with respect to the eventual domination relation, <*. [If no danger

of confusion arises, we abuse language and refer to the scale f]

!See 4.31 for the definitions of the approachability property and of VWS.
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A key fact in PCF theory is the following result; it is immediate from GCH:
Theorem 4.23 (Shelah [Sh]). Let x be singular. Then there is a scale for k. O

Definition 4.24. Let 6, x be ordinals, and let f = (fo: @ <7n) be a <*-strictly increasing

sequence of functions f, : 6 — k. An ordinal & < 7 is good (with respect to f) iff there is

an unbounded set A C o and an 7 < ¢ such that

VB, € AVj > i (B <v = fa(j) < f1(4))-

This notion is dubbed flatness in [Ko], where it is only considered for cf(a) > cf(9).
Notice that for f as in the definition, a is good whenever cf(a) < cf(6).

Fact 4.25 (Shelah). Let k be singular, let p < k be regular, and let (R, _) be a scale for

k. Then {a < k1 : cf(a) = p and a is good} is stationary in k+. O

Theorem 4.26 (Cummings). Let N C W be inner models contradicting Cummings’s
conjecture at . Suppose (ut)YN = (WHW and v > w. Let (i, f) be a scale for p in N.
Then there is n < v such that whenever n < § < v is regular,

{v<vt: cf(y) =4 and v is good}
is nonstationary in W. O

We sketch part of the argument of Cummings’s theorem in our situation. Remem-
ber M |= GCH is an inner model, w} = wM, w¥ = AN)M and cfM(\) = w.
Fix a scale (X, f) for A in M.

Write A = X, where (X, : v <wi) is an increasing sequence of countable

y<wi
sets.

For v < wy, set
By :={a<(A)M: ran(fa) € Xy },

and notice that ( B, : v < wy ) is increasing and wy = U7 <wy, By- Thus, for all « sufficiently
large (say v > 7o), B, is unbounded.
For any such v, let D, = acc(By). Cummings concludes by arguing that no
v
§ € DyNS,? is good: Otherwise, X, would be uncountable.

In our situation, this immediately gives

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. FORCING AXIOMS AND INNER MODELS OF GCH 89

Corollary 4.27. {vy <wsy: cf(y) = w1, 7 is good} is nonstationary. O
Remark 4.28. In [W], Definition 10.60, Woodin introduces the concept of weak properness:

Definition 4.29. A partial order P is weakly proper iff every countable set of ordinals in

VP is covered by a countable set in V.

Notice that every proper forcing is weakly proper, and that if P = Q * R is weakly
proper then so is Q, and R is weakly proper in V.
By Fact 4.25, if v and X, are defined as above, then X, is a countable set such

that no countable set in M can cover. In particular, we have the following:
Corollary 4.30. V is not a forcing extension of M via weakly proper forcing. U

Similarly, suppose for example that W is an inner model and « is supercompact in
W. Let P be in W the standard forcing of size x to make PFA hold, let G be P-generic over
W, and set Vi = WG] (so k = R3!). Then no M as required can be intermediate between
W and V;. Otherwise, V7 would be a forcing extension of M and, since P is proper, the
extension from M to V; would be weakly proper, and we reach a contradiction.

And the variations, as indicated in Section 4.1 are endless. For example, the same

holds if  is strong in W and P is the standard forcing of size x to make SPFA(c) hold.
Definition 4.31 (Foreman, Magidor [FoMal). Let x be a cardinal.

1. An approachability sequence for k is a sequence (C, : o < x™ ) such that for a club of

a€ k',

e C, C « is unbounded,
e ot(Cy) = cf(a), and
o Vi<ady<a(Conpf=Cy).

2. The approachability property holds at k iff there is an approachability sequence for «.
3. A very weak square sequence for k is a sequence (Cy, : a < k™) such that for a club

of a € KT,

e (U, C « is unbounded, and
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e Vz € Py, (Ca) (z bounded in Cy = 38 < a(z = Cp)).
4. Very weak square holds at k, VWS,,, iff there is a very weak square sequence for «.

That Lemma 4.21 relates to the result from Section 4.3 follows from (1) of the

following lemma:
Lemma 4.32 (Foreman, Magidor [FoMal]). Let x be a strong limit singular cardinal.
1. Ifcf(k) > w, then VWS, holds.

2. Let (K, f) be a scale for k. Suppose VWS, holds. Then there is a club € such that all
ye €N Sﬂ are good.

3. Suppose the approachability property holds. Then there is a club C such that all v €
€\ 85" are good. O

Hence, the approachability property fails in M at A, and either very weak square
fails in M at A, or (Sj,‘:r )M is disjoint from D, N €, where € € M is as in the lemma with
k = X and 7 is such that B, is unbounded.

Lemma 4.21 follows now from results in [Ko|. First, we need a definition.

Definition 4.33. Let I be an ideal over a set A. A function g : A — ORD is an exact
upper bound (an eub) of F € AORD (with respect to I) iff

1. Vfe F(f<rg), and
2. For any ¢’ : A — ORD, if ¢’ <; g then 3f € F (¢’ <1 f).

Theorem 4.34 (Shelah’s trichotomy theorem, see [Ko]). Suppose p > |A|" is regular,
I is an ideal over A and f: (fa: o < p) is an <p-increasing sequence of ordinal functions

on A. Then f satisfies one of the following:
e (Good) f has an eub f with cf f(a) > |A| for all a € A;

e (Bad) There are sets S(a) for a € A satisfying |S(a)| < |A] and an ultrafilter U over
A extending the dual of I so that for all a < p there exists ho € [], S(a) and B < p
such that fo <y ha <u fs-

o (Ugly) There is a function g : A — ORD such that the sequencet = (ty : a < p) does
not stabilize modulo I, where to, = {a € A: fo(a) >ga)}. O
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Remark 4.35. Notice that if Ugly or Bad applies in the situation described in the tri-
chotomy theorem, then 214/ > p, so 2141 > |A|*.

Lemma 4.36 (Kojman [Ko]). Suppose that p > |A|T, I is an ideal over A, f =
(fa:a<p) C AORD is <j-increasing, f is an eub of f and liminfrcf f(a) = p. If
k=cfk < p and 94 < k for all 0 < &k, then every point of cofinality k in fz's good. O

Corollary 4.37. M | Va < A" (If cf(a) is not the successor of a cardinal of

cofinality w then « is good).

Proof: Let I be the Frechet ideal over w, that is, the ideal of finite sets. Notice that by CH
and the trichotomy theorem, the scale f has an eub, and since each f, € [],, An, it is easy

to see that A = liminf; cf f(a). The result follows immediately from the previous lemma.

O

Proof of Lemma 4.21: From 4.37 and Cummings’s result it follows that if A = XM
then (Ss%/ )M is stationary and, in fact, M correctly computes the cofinality of almost every
a €S2

The remark following Lemma 4.32 completes the proof. O

What can be said about the points of cofinality w? For example, is it necessarily
the case that { o € S22 : « is good } is stationary?

This question has the flavor of a problem in partition calculus. At the same time,

some new idea seems to be required. For example, notice the following:

Remark 4.38. Suppose that § = (go: @ < p) is a <*-increasing sequence of functions
go : w — ORD, and that ¢ < cfu. Then both the set of good points with respect to § of

cofinality w and the set of good points of cofinality w1 are stationary in p.

Proof: Let C C p be a club, and define h : [C]? — w by h(a, 8)< = n iff n is least such
that Ym > n (fa(m) < fg(m)).

By the Erdds-Rado theorem there is an uncountable homogeneous subset of C.
Let « be the supremum of its first w many members. Then v € C is good and has cofinality
w. Let & be the supremum of its first w; many members. Then § € C is good and has

cofinality wy. U
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However, this remark does not apply in our case: By Konig’s lemma, there can be
no inner model of V extending M which still satisfies CH and computes wy correctly (the
set of good points of cofinality w would be stationary in this model.)

An easy observation, with which we conclude this Section, is that if PFA(c) holds
and M is an inner model of GCH that computes Ny correctly and where N;/ is a successor,
then there is a real r such that M|r] computes Ry correctly. It follows that CH must fail in
M{r], since otherwise (2<“1)M["l would be a weak Kurepa tree in V.

In effect, suppose Xy = (AT)M. Let ¢ be a subset of w; coding a well-ordering in
order-type A\. Then M[t] computes Ny correctly. Let ¥ = (7o : @ < w;) be a sequence of
almost-disjoint reals in M. By MA,,,, there is a real 7 coding ¢ (in the sense of almost-disjoint

forcing, see Chapter 2) with respect to 7. Then t € M|r|, and we are done.

Question 4.39 (Woodin). Suppose §3 = Ry and Vr € R(r! exists) (this is implied, for
example, by MM(c)). Let M be an inner model correctly computing Ro. Must CH fail in
M?

Notice that the hypothesis of 4.39 implies the existence of reals  such that M{r| =
—CH. However, the arguments given above do not apply to this case, since now V may have

weak Kurepa trees.

Question 4.40 (Woodin). Suppose V is closed under sharps. Let M be an inner model

correctly computing No. Does ((5%)M =9 % ¢

4.5 A cautionary remark

An overly enthusiastic previous incarnation of this Chapter actually claimed to have solved
Woodin’s question, and to show that if Question 4.2 has a positive answer, then GCH fails
in the ground model.

These problems are still open. However, a published result of Shelah, [Sh] Claim
VII.4.19, led us to their solution. Unfortunately, not all the hypotheses of this Claim are
stated in [Sh]. This is mentioned here so the reader avoids following us into the same pitfall.

The statement below is the result actually proved in [Sh].

Claim 4.41 (Shelah). Suppose N C W are inner models, W = N[r], r C u, p a cardinal
of N, (ut)N =R and N = GCH. Then W k= CH, provided that 0 does not exist. [
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In [Sh], Claim 4.41 is stated without the 0% assumption. It is relatively straight-
forward to solve Woodin’s question and Question 4.2 under GCH with the statement as it
appears in [Sh].

However, as shown in the previous Sections, 0! exists (and much more) if either

question has a negative answer.

We thank Ralf Schindler for pointing out to us that 4.41 must fail without some
anti-large cardinal assumption?. An examination of the proof in [Sh] shows that some such
assumption (0! being a natural candidate, given the result to which the Claim is applied)

is tacitly assumed. For example:

e First, it is claimed that cf" () = w;.

e More seriously still, an appeal is made to what Shelah calls the strong Ry-covering
lemma, which it is claimed must hold between an appropriate inner model of NV and
W. This is a very strong assumption. Basically, the result requires that the sets of

the smaller model are stationary in the bigger one.

Notice that both of these claims fail in the case that concerns us, the first one by
Claim 4.11, and the second by Cummings’s argument leading to Corollary 4.30.
As a matter of fact, a result of Woodin and Shelah contradicts the Claim, as stated

in [Sh]:

Theorem 4.42 (Shelah, Woodin [ShW]). Assume ZFC + GCH. Suppose that there are
@ many measurable cardinals, ;1 > N1 a reqular cardinal. Then there is a pair (N, W) of

cardinal-preserving class generic extensions of the universe such that
e W =NIir], r a real,
e N = GCH, and
e Wke=p O

This is accomplished via, among others, a Prikry-style partial order, thus produc-

ing an extension where covering must fail.

*From the results in [Sh] it follows that the assumption can be relaxed to “There are no inner models with
measurable cardinals.”

“Whatever is almost true is quite false, and among the most dangerous of errors,
because being so near truth, it is more likely to lead astray.”

Henry Ward Beecher (1813-1887)
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