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The underlying metatheory here includes AD, although it can be eliminated
from most of the discussion when we restrict our attention to Borel functions.

Turing equivalence =y is arithmetic (thus Borel) and countable (i.e., every
class is.)

Definition 1. E is Universal among Countable Borel Equivalence Relations
(CBER) iff

1. E is a CBER.
2. For any CBER F, F <g FE (i.e., 3f Borel (¢Fy & f(z)Ef(y)).)
Fact 2 (ZF + DC). There is a universal CBER E,,. O
Up to bireducibility, there is a unique such equivalence relation.
Example 3. 1. X =22 F, = free group on 2 generators.
Fy acts on X by shifting: For a € 2¥2 and g € Iy,
(9-a)(h) = a(g™"h).

2. f"‘:ec on w¥: xi:ecy Zﬁ
Ir recursive (1 € Soo and Yn (z(n) = y(m(n)))).

. . =2 =2 .
Question 4. Similarly, define ~,,. on 2¥. Is ~, .. universal?

Theorem 5 (Slaman, Steel. Unpublished). =4rithmetic i universal. O
Question 6. Is =7 universal?

Conjecture 7 (Kechris). If E is universal, F' countable and E C F (literally,
i.e., every E-class is contained in a single F-class), then F is also universal.

Notice:

1. ~. . C=y (thinking of =7 on w*.)



=2

2. =r<p ~ (thinking of =7 on 2"".)

This is because z =1 y < z' =1 v', so f(z) = 2’ witnesses the reduction.

rec

3. “F is universal” is a Borel (hence absolute) statement.

Assume =7 is universal. Here are some consequences of this assumption:

Let D be the structure of the Turing degrees. Let E be the equivalence
relation =T XA(Z) on 2¥ X 2: (l’l,il)E(xQ,ig) iff ’il = ’i2 and 1 =T T9. By
universality, £ <p=r, so there is a function f : D x 2 — D witnessing such
a reduction. f induces 2 functions fy, f1 : D — D. Notice that f, and f; are
=r-invariant,

Yo,y (fo(z) Zr fi1(y))

and 0 = (fo ““’w) n (fl ““’w). Let Xi = fi “Wa.

Either Xy U X; contains a cone of degrees, or it does not, and even if it
does, then at least one of them must miss a cone anyway. Now, if ¢ : D — D is
injective and ¢“D does not contain a cone, then ¢ is not increasing (or, since
»“D would be cofinal, it would contain a cone) and ¢ is not constant on a cone
(being injective).

Hence, universality of =7 contradicts Martin’s conjecture!

Fact 8. Suppose EE <g F <g E are both compressible CBER. Then E =g F
(i.e., there is a Borel bijection of the spaces witnessing the bireducibility). O

Fact 9. =7, FE are compressible. [

So we would have =7 XA(2) 2=7. Let f : D x 2 — D be such an isomor-
phism. Let A = f“D x {0} and B = f“D x {1}. Then they are disjoint, and we
can induce an involution g : A — B (i.e., g> =id.) A and B are Borel sets, and
their union is D. Notice that if one of them contains a cone, the other cannot.
This g is thus sidewise!

Definition 10. g is sidewise iff g(z) L7 = a.e.

The reason for this is that g(z) >7 z a.e. implies z = ¢*(z) >7 g(z) >7 =
a.e., so g(x) =r z a.e. Similarly, if g(x) <7 x a.e., then either g(z) =7 z a.e.,
or else g(z) <7 x a.e. (and hence g is constant a.e., by results of Slaman and
Steel.)

Remark 11. =aithmetic 1S compressible, so such f exists for =arithmetic-

Why is =Arithmetic Universal?

Uniformly = A ithmetic-invariant functions can be “ugly”: Notice, e.g., that we
can diagonalize (z — (2(™),,) and get the real (0(™),,, which is not arithmetic,
while with =7, we we “diagonalize” this phenomenon cannot occur. Also, non-
uniformly Turing-invariant functions are hard to build.

Question 12. (AD) Is there f : 2¥ — 2% such that f(x) =7 2' a.e., but f is
not uniformly degree-invariant a.e.?



The “natural” first way to try would be to use a priority argument. But
these constructions tend not to be degree-invariant. It is open whether there is
a degree-invariant solution to Post problem.

The question is still open even if instead of the AD-context we restrict our
attention to Borel functions.

Slaman has pointed out that it is not even known if there are r.e. operators
which solve Post problem on the A-sets. The idea here would be to look for
larger and larger ideals where such a solution could be found. If on a small
ideal the construction were to fail, we would have saved ourselves the trouble of
constructing a fairly elaborate priority argument.



