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Abstract

We present a recent proof due to Harm Derksen, that any linear
operator in a complex finite dimensional vector space admits eigen-
vectors. The argument avoids the use of the fundamental theorem of
algebra, which can then be deduced from it. Our presentation avoids
any appeal to the theory of determinants.
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1 Introduction

The goal of this note is to present a reasonably self-contained proof of the
fundamental theorem of algebra:

Theorem 1.1 (Gauß). Any non-constant polynomial p(x) with complex co-
efficients has a complex root.

The proof described here is due to Derksen [Der03] and uses linear al-
gebra. The main point is that linear operators admit eigenvectors, and this
can be proved without the use of the fundamental theorem:

Theorem 1.2. Every linear operator in a finite dimensional complex vector
space admits an eigenvector.

Theorem 1.1 is an immediate corollary of Theorem 1.2, once one shows
that any non-constant polynomial is the minimal polynomial of some oper-
ator.

Keeping with the spirit of Axler’s book [Axl97], I organize the presen-
tation in a way that avoids the use of determinants. This adds a couple of
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slight complications to the argument in Derksen [Der03], since we need to
reprove its Lemma 4 and Corollary 8. They correspond here to Lemma 4.1,
the nice proof of which was suggested by David Milovich, and Lemma 2.1.
Let me emphasize that nothing here is new or due to me.

It is well known that the fundamental theorem of algebra is really a
consequence of the following two facts:

Fact 1.3. Odd degree polynomials with real coefficients have a real root.

Fact 1.4. Positive real numbers have real square roots.

What this means, that these two facts suffice, is that given any real
closed field R, the extension C = R(

√
−1) is algebraically closed. Recall:

Definition 1.5. R is a real closed field iff

1. R is a field.

2. There is a linear order < of R that makes R into an ordered ring, i.e.,
for all a, b, c ∈ R, if a ≤ b then a + c ≤ b + c, and if also 0 ≤ c, then
a · c ≤ b · c.

3. Odd degree polynomials p ∈ R[x] admit a root in R.

4. Positive elements of R have a a square root.

We do not need this level of generality, and work with R and C explicitly,
but the reader may want to keep in mind that this is really all that we are
using, and therefore the argument in this note actually proves:

Theorem 1.6. Let R be a real closed field. Then C = R(
√
−1) is alge-

braically closed.

On the other hand, one can give examples of fields R satisfying 1.–3. or
1., 2., 4. of the definition above and such that R(

√
−1) is not algebraically

closed, so Facts 1.3 and 1.4 are necessary as well. Naturally, the argument
below uses Fact 1.3 and 1.4: Fact 1.3 is used explicitly in the proof of Lemma
4.1. Fact 1.4 is used in the proof of Lemma 4.4, as follows: Fact 1.4 implies
that any complex number admits a complex square root. In effect, if a, b ∈ R

then, letting c =
√
a2 + b2, we have that

√
c+ a

2
+ i

√
c− a

2
is a square root

of a+ ib. This allows us to use the familiar quadratic formula, to conclude
that any quadratic polynomial factors over C.

Our notation is standard; we refer to Axler [Axl97].
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2 The fundamental theorem of algebra

Theorem 1.1 follows from Theorem 1.2 by a well-known procedure.
First, we need to recall some standard facts: Let V be a finite dimen-

sional complex vector space and let T : V → V be linear. We can define as
usual the minimal polynomial mT of T . This is a monic polynomial with
the property that, for any polynomial q, mT |q iff q(T ) = 0, see Axler [Axl97,
Theorem 8.34].

Similarly, for any vector v, we can define the minimal polynomial mT,v

of T for v. This is a monic polynomial with the property that, for any
polynomial q, mT,v|q iff q(T )v = 0. In particular, mT,v|mT .

Thanks to Theorem 1.2, we can now define the characteristic polyno-
mial cT of T and prove the Cayley-Hamilton theorem that cT (T ) = 0. Recall
that cT is monic and deg(cT ) = dim(V ). None of this requires the use of
determinants or the fundamental theorem of algebra; note that the use of
the fundamental theorem in this argument, as described in Axler [Axl97]
(namely, the conjunction of Theorems 5.13, 8.10, and 8.20), is really a use
of Theorem 1.2.

Since mT |cT , it follows that deg(mT ) ≤ dim(V ).

Lemma 2.1. Let p be a monic polynomial of degree n with complex coef-
ficients. Let V be a complex vector space of dimension n. Then there is a
linear operator T : V → V such that mT = p.

Proof. Let

p(x) = xn +
n−1∑
k=0

akx
k.

We define a linear operator T : V → V with mT = p. Let v1, . . . , vn be a
basis for V . By linearity, it suffices to specify the values Tvj for 1 ≤ j ≤ n.

First, set Tvj = vj+1 for 1 ≤ j ≤ n − 1, and note that for any such T ,
we have T jv1 = Tvj for 1 ≤ j ≤ n. In particular, since the vj are linearly
independent, it follows that deg(mT,v1) ≥ n and, therefore, deg(mT,v1) = n
since mT,v1 |mT and deg(mT ) ≤ n. In fact, mT,v1 = mT , since both are
monic.
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Now set Tnv1 = Tvn = −
∑n−1

k=0 akvk+1, so

Tnv1 = −
n−1∑
k=0

akT
kv1,

or
p(T )v1 = 0.

It follows that p = mT,v1 = mT .

For example, taking V = Cn and letting the vj be the standard vectors
ej , the matrix representation of T in terms of the standard basis is

0 0 0 . . . 0 −a0

1 0 0 . . . 0 −a1

0 1 0 . . . 0 −a2
...

...
...

. . .
...

...
0 0 0 . . . 0 −an−2

0 0 0 . . . 1 −an−1


.

Proof of Theorem 1.1. Let p be a non-constant polynomial of degree n with
complex coefficients. We need to show that p admits a complex root. With-
out loss, p is monic. By Lemma 2.1, there is a linear operator T : Cn → Cn

such that p = mT , so p(T ) = 0. Using Theorem 1.2, let v be an eigenvector
of T with eigenvalue λ. Then

0 = p(T )v = p(λ)v,

and it follows that λ is a root of p.

3 Commuting operators

Theorem 1.2 shows that if V is a complex finite dimensional vector space
and T : V → V is linear, then T admits an eigenvector. It turns out that
this statement can be easily strengthened as follows:

Corollary 3.1. Let V be a complex finite dimensional vector space. Let
F be a (possibly infinite) family of pairwise commuting linear operators on
V , i.e., for any T, S ∈ F , TS = ST . Then the operators in F admit a
common eigenvector, i.e., there is a vector v 6= 0 that is an eigenvector of
each T ∈ F .
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The proof of Theorem 1.2 actually requires the use of an appropriate
(local) version of Corollary 3.1 where |F| = 2. Accordingly, we begin by
showing this. Since the proof for arbitrary F is only microscopically longer
than the argument for |F| = 2, we present the general version. This corre-
sponds to Derksen [Der03, Lemma 3], although Derksen only considers finite
families F .

Let E(K, d) be the following statement about an arbitrary field K and
a positive integer d:

If V is a vector space over K of finite dimension, and d 6 |dim(V ),
then any family F of pairwise commuting linear maps from V to
itself admits a common eigenvector.

Let E(K, d, r) be the particular case of the statement above where we
add the requirement that |F| = r.

Lemma 3.2. For any field K and any d, E(K, d, 1) implies E(K, d).

Proof. First we argue by induction on r = |F| that the result holds when
F is finite. Accordingly, assume E(K, d, r). We prove E(K, d, r + 1) by
induction on the dimension of the vector space under consideration. Let V
be a K-vector space of dimension n not divisible by d, let F be a family of
r + 1 commuting linear maps from V to itself, and suppose that whenever
X is a K-vector space of dimension m < n such that d 6 |m, then any family
of r+1 commuting linear maps of X to itself admits a common eigenvector.

Fix T ∈ F . By E(K, d, 1), the map T admits an eigenvalue λ. Let

W = null(T − λI)

and
U = ran(T − λI).

Then both W and U are S-invariant for all S ∈ F , by the commutativity
assumption. Moreover, W is nontrivial and therefore U 6= V .

Recall that dim(W ) + dim(U) = n. It follows that either d 6 |dim(W ) or
d 6 |dim(U). If W = V , every non-zero vector is an eigenvector of T , and we
are done by the inductive assumption on r. Otherwise, we are done by the
inductive assumption on n, since either W or U has dimension strictly less
than n and not divisible by d.

Now we deduce the general case: Let F be a commuting family of op-
erators on the finite dimensional K-vector space V such that d 6 | dim(V ),
and suppose that they do not have a common eigenvector. Let T1 ∈ F , and
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consider a maximal linearly independent family v1, . . . , vn of eigenvectors of
T1. For 1 ≤ i ≤ n, let Ti+1 ∈ F be an operator for which vi is not an
eigenvector. Then T1, . . . , Tn+1 is a finite family of commuting operators on
V without a common eigenvector, contradiction.

4 Eigenvectors for operators in finite dimensional
complex vector spaces

Now we present the argument in Derksen [Der03] for Theorem 1.2. The proof
proceeds by a “thinning out” process: We will prove Theorem 1.2 by showing
by induction that E(C, 2k) holds for all k, although (as mentioned above)
only the case of two commuting operators needs to be considered. This
clearly implies Theorem 1.2 and Corollary 3.1, since any finite dimension is
eventually covered by these statements as k increases.

Lemma 4.1. E(R, 2) holds.

Explicitly, Lemma 4.1 asserts that if V is an odd dimensional real vector
space, then any family of commuting linear operators T : V → V admits a
common eigenvector.

The proof that follows was found by David Milovich (personal commu-
nication); it is in the spirit of Axler [Axl97]. However, I feel it is easier than
the argument there, Theorem 5.26 (and it has the additional advantage of
not depending on the fundamental theorem of algebra, of course).

Proof. By Lemma 3.2, it suffices to establish E(R, 2, 1). The argument is
by induction on n = dim(V ), with the case n = 1 being obvious.

Assume then that n is odd, that the result holds for all positive odd
dimensions smaller than n, and that T : V → V is linear. We may also
assume that the result is false for n, and argue by contradiction. It follows
that T −λI is invertible for all λ ∈ R (where I is the identity operator), and
that if W is a proper T -invariant subspace of V , then dim(W ) is even.

Claim 4.2. Any v ∈ V is contained in a proper T -invariant subspace.

Proof. This is clear if v = 0. If v 6= 0, since v, Tv, . . . , Tnv are linearly
dependent, there is a least k ≤ n for which there is a polynomial p ∈ R[x]
such that p(T )v = 0 and p is non-constant and of degree k. If k < n we are
done, because then span{v, Tv, . . . , T k−1v} is T -invariant and of dimension
at most k. If k = n, we use that p has a real root, to factor

p(T ) = (T − λI)q(T )

6

http://www.tamiu.edu/~dmilovich/


for some λ ∈ R and q ∈ R[x] of degree n− 1. Since T − λI is invertible, we
have that q(T )v = 0, contradicting the minimality of k.

Let W be a maximal proper T -invariant subspace. Let v /∈ W, and let
U be a proper T -invariant subspace with v ∈ U. Note that W + U is also
T -invariant, and strictly larger than W, since it contains v. By maximality
of W, we must have W + U = V. Since W and U have even dimension, it
follows that dim(W ∩ U) is odd. But W ∩ U is T -invariant and proper,
contradiction.

Lemma 4.3. E(C, 2) holds.

Proof. Again, it suffices to establish E(C, 2, 1). We use Lemma 4.1. Let n be
odd, consider a complex vector space V of dimension n, and let T : V → V
be linear. Derksen’s first key idea here is the following:

Let L(V ) denote the space of C-linear transformations of V to
itself. Consider the linear map fT : L(V ) → L(V ) given by
fT (S) = TS. If fT admits an eigenvector S, we are done: Let
v ∈ ran(S). Then v is an eigenvector of T .

In order to ensure that fT has an eigenvector, one possible approach is to try
to identify an fT -invariant subset W of L(V ) that is a real vector space of odd
dimension, and deduce the existence of the eigenvector S from E(R, 2, 1).
This approach, however, cannot succeed directly, since T may not have any
real eigenvalues. It is here that Derksen’s second key idea appears.

Rather than considering fT directly, Derksen considers V as an inner
product space, and looks separately at what would correspond to the real
and imaginary parts of fT ,

RT (S) =
1
2

(TS + S∗T ∗),

and
IT (S) =

1
2i

(TS − S∗T ∗).

Here, as usual, S∗ is the adjoint of S, the unique map in L(V ) such that

〈Su, v〉 = 〈u, S∗v〉

for all vectors u, v ∈ V , see Axler [Axl97, Chapter 6].
Note that TS = RT (S) + iIT (S). Also, ran(RT ) and ran(IT ) are both

contained in H(V ), the set of self-adjoint maps from V to itself, i.e., those
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linear maps S such that S = S∗. Although H(V ) is not a subspace of L(V )
since it is not closed under scalar multiplication (because 〈Su, u〉 ∈ R for all
u ∈ V whenever S ∈ H(V )), this suggests us to take W = H(V ), considered
as a real vector space.

Note that dimR(W ) = n2, an odd number. In effect, fixing an orthonor-
mal basis v1, . . . , vn for V , a basis for W is obtained by taking:

• For 1 ≤ j ≤ n, the unique linear map Tj such that Tjvj = vj and
Tjvk = 0 if j 6= k.

• For 1 ≤ j < k ≤ n, the unique linear map Tj,k such that Tj,kvj = vk,
Tj,kvk = vj , and Tj,kvl = 0 for l /∈ {j, k}.

• For 1 ≤ j < k ≤ n, the unique linear map T ′j,k such that T ′j,kvj =√
−1vk, T ′j,kvk = −

√
−1vj , and T ′j,kvl = 0 for l /∈ {j, k}.

By construction, each of these operators is self-adjoint, and there are

n+ 2
(
n(n− 1)

2

)
= n2

of them. Using that v =
∑n

j=1〈v, vj〉vj for any v, it is straightforward to
verify that they are linearly independent and span W .1

It is here that Lemma 3.2 is first used: A direct computation verifies
that RT and IT commute. Since W is RT - and IT -invariant, Lemma 4.1
implies that they admit a common eigenvector. This gives the result.

Lemma 4.4. For any positive integer k, E(C, 2k) holds.

Proof. Once again, it suffices to show E(C, 2k, 1). The proof is by induction
on k, with the case k = 1 being Lemma 4.3. Assume the result for k. Let V
be a space whose dimension n is divisible by 2k but not 2k+1. Let T : V → V
be linear.

Before proceeding to the argument, note that we must definitely use
here Fact 1.4, since we have not appealed to it yet. As explained above, we
will use it by showing that, for some nonzero vector v, there is a quadratic
polynomial p(x) = x2 + αx+ β ∈ C[x] such that p(T )v = 0. By factoring p

1Being even more explicit, recall the well-known and easily verifiable fact that if
v1, . . . , vn is an orthonormal basis of V , and T ∈ L(V ) then, if the matrix A = (ai,j)n

i,j=1

represents T with respect to this basis, the matrix A∗ = (bi,j)n
i,j=1 representing T ∗ with re-

spect to the same basis satisfies bi,j = aj,i, see Axler [Axl97, Proposition 6.47]. This means
that if T ∈ H, then T is completely determined by the numbers ai,j for 1 ≤ i ≤ j ≤ n,
and the basis described above is then the obvious one.
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into linear terms, we conclude that T admits an eigenvector. To find v, we
proceed as in Lemma 4.3, and instead find a non-zero operator S such that
p(T )S = 0. We can then take as v any vector in ran(S).

To find S and p, we use the inductive assumption, and consider a com-
plex subspace W of L(V ) of dimension not divisible by 2k, and exhibit two
commuting linear operators L1, L2 : W →W . The desired S will then be a
common eigenvector.

To see how this could work, note we need that

(T 2 + αT + βI)S = 0,

or βS = −T 2S − αTS, which we can rewrite as

βS = T (−αS − TS).

If L1 and L2 are the two operators on W we are looking for, it would be
reasonable to have −α to be the eigenvalue of L1 corresponding to S,

L1(S) = −αS,

and to set
L2(U) = T (L1(U)− TU),

so β would be the eigenvalue of L2 corresponding to S.
Derksen’s final trick makes this work: Let W = S(V ) be the complex

vector space of skew-symmetric maps from V to itself. Perhaps the easiest
way to define W consists in fixing an inner product and an orthonormal basis
for V , and taking as W the set of all those S whose matrix A = (ai,j)n

i,j=1

with respect to this basis satisfies Aᵀ = −A, i.e., ai,j = −aj,i whenever
1 ≤ i ≤ j ≤ n. We write Sᵀ for the operator whose matrix is Aᵀ.2

A straightforward argument as in the previous lemma shows that this

is a (complex) space of dimension
n(n− 1)

2
. Note that this number is not

divisible by 2k, by our assumption on n.
Now let L1, L2 ∈ W be given by L1(S) = TS + ST ᵀ and L2(S) =

T (L1(S)− TS) = TST ᵀ. Note L1, L2 commute, and we are done.

As explained in Section 3, Theorem 1.2 follows immediately from Lemma
4.4, concluding the proof.

2Of course, symmetry (Sᵀ = S) and skew-symmetry could also be defined without
reference to matrices, but we do not need this here. Just as well, we could have adopted

as W the space of symmetric maps, which has complex dimension
n(n + 1)

2
.
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