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This nice paper is an addition to the literature on diamond principles and other guessing principles,
and in particular to how they relate to the construction of Souslin trees and to saturation properties
of the nonstationary ideal [see also A. Rinot, inSet theory and its applications, 125–156, Contemp.
Math., 533, Amer. Math. Soc., Providence, RI, 2011;MR2777747].

More specifically, the paper continues a line of investigations started in [B. König, P. B. Larson
and Y. Yoshinobu, Fund. Math.195(2007), no. 2, 177–191;MR2320769 (2008f:03064)], where
principles for guessing generalized clubs were considered. In that paper, the strong generalized
club principlef∗(κ, S) was introduced. Suppose thatκ ≤ λ, and thatS is a stationary subset of
the regular uncountable cardinalλ. Thenf∗(κ, S) asserts that there is a sequence

(Cδ | δ ∈ S)

such that:
(1) for everyδ ∈ S, Cδ is club in[δ]<κ, and
(2) for every clubD in [λ]<κ, there exists a clubC ⊆ λ such that

S ∩C ⊆ {δ ∈ S | ∃x ∈ Cδ (x⊆ y ∈ Cδ ⇒ y ∈D)}.

It is then shown that ifλ = λ<λ is regular and2λ = λ+, thenf∗(λ, Sλ+

λ ) implies the existence
of a λ-closedλ+-Souslin tree. This continues themes going back to Jensen’s work onL [see
R. B. Jensen, Ann. Math. Logic4 (1972), 229–308; erratum, ibid.4 (1972), 443;MR0309729 (46
#8834)].

Suppose thatλ is regular and uncountable, andT ⊆ λ andS ⊆ Sλ+

λ are stationary. Definition 2.2
introducesreflected diamond, 〈T 〉S, the assertion that there are sequences

(Cδ | δ ∈ S) and (Aδ
i | δ ∈ S, i < λ)

such that:
(1) for everyδ ∈ S, Cδ is a club subset ofδ of typeλ, whose increasing enumeration we denote

by (δi | i < λ), and
(2) for every clubD ⊆ λ+ and everyA ⊆ λ+, there are stationarily manyδ ∈ S such that{i ∈

T | δi+1 ∈D andA∩ δi+1 = Aδ
i+1} is stationary inλ.

This principle (a version of theusualclub guessing) is interpolated betweenf∗ assumptions
(which are assertions ofgeneralizedclub guessing) and their consequences. For example (Defini-
tion 1.6), suppose thatκ≤ λ, thatλ is regular and uncountable, and thatS ⊆ λ is stationary. The
principlef−(κ, S) asserts that there is a sequence

(Ci
δ | δ ∈ S, i < |δ|)
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such that:
(1) for everyδ ∈ S andi < |δ|, Ci

δ is cofinal in[δ]<κ, and
(2) for every clubD in [λ]<κ, the set

{δ ∈ S | ∃i < |δ| (Ci
δ ⊆D)}

is stationary.
It is clear that ifS ⊆ λ+, thenf∗(λ, S) impliesf−(λ, S). Moreover, in Theorem 2.5 it is shown

that if λ is regular and uncountable, andT ⊆ λ andS ⊆ Sλ+

λ are stationary, then each of the
following statements implies the next one:
(1) ♦S.
(2) 2λ = λ+, andf−(κ, S) holds for someκ < λ.
(3) 〈T 〉S.

If in addition the nonstationary ideal onλ restricted toT is saturated, then〈T 〉S implies♦S.
In Theorem 2.7, it is shown that ifλ = λ<λ is uncountable, and〈T 〉Sλ+

λ
, then there is aλ-complete

λ+-Souslin tree.
Additional results are presented, showing the usefulness of the new principles. Several questions

are also stated. Particularly interesting in my opinion is whether GCH is consistent with the failure,
for some regular uncountableλ, of the principles〈T 〉Sλ+

λ
for all stationaryT ⊆ λ.

Reviewed byAndŕes Eduardo Caicedo
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