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The paper under review is nicely written and carefully organized. It begins with a brief account of
known coding results. The first theorem on coding an uncountable set of reals by a single real is due
to R. B. Jensen and R. M. Solovay [inMathematical Logic and Foundations of Set Theory (Proc.
Internat. Colloq., Jerusalem, 1968), 84–104, North-Holland, Amsterdam, 1970;MR0289291 (44
#6482)]. Their method ofalmost disjoint codingis carried out in two stages: Identify the set of
reals with a setA⊆ ω1. First,A is reshaped: A club C ⊆ ω1 is added so that the reals ofL[A][C]
are the same as the reals ofL[A], andξ < ω

L[A∩ξ]
1 for all ordinalsξ ∈ C. Then almost-disjoint

forcing adds a realx to L[A][C] such thatA,C ∈ L[x], soL[A][C][x] = L[x].
This result was significantly extended by Jensen [see A. Beller, R. B. Jensen and P. Welch,

Coding the universe, London Mathematical Society Lecture Note Series, 47, Cambridge Univ.
Press, Cambridge, 1982;MR0645538 (84b:03002)], who showed that ifV = L[A] for someA⊆
ORD and GCH holds, then there is a cofinality preserving class forcing extension that has the form
L[x] for some realx, and whereA is definable fromr. It was further refined by S.-D. Friedman
[Ann. Pure Appl. Logic41 (1989), no. 3, 233–297;MR0984629 (90i:03056)], who showed that,
in addition, the extension can be assumedminimal in the sense that for anyB ⊆ ORD in L[x],
eitherB ∈ V or elseL[B] = L[x]. Both of these arguments require a thorough understanding of
fine structure.

The main new result of the paper is that ifA⊆ ω1 then there is a much simpler minimal coding.
Specifically, assume thatA⊆ ω1 andV = L[A]. A realx is added by a certain forcing consisting
of perfect trees (a subforcing of Sacks forcing), such that:
(1) There is inL[x] a clubC ⊆ ω1 that reshapesA.
(2) The setA is in L[x], soL[A][x] = L[x] and, inL[x], A is ∆1 definable overH(ω1) from x.
(3) The realx is minimal, so that for anyY ∈ V [x], eitherx ∈ V [Y ] or Y ∈ V .
The authors also show that Sacks forcing itself is in general not enough to achieve the result, and

include a brief survey of similar negative results for a diverse class of posets. Building on results
of R.-D. Schindler [J. Symbolic Logic66 (2001), no. 3, 1481–1492;MR1856755 (2002g:03111);
MLQ Math. Log. Q.50(2004), no. 6, 527–532;MR2096166 (2005g:03076)], they show that ifωV

1
is not remarkable inL, then item (2) of the main result together with (3) restricted toY ⊆ ω can
be achieved by proper forcing. Properness, however, prevents item (1) from holding in general.
As a corollary, the existence of a remarkable cardinal is equiconsistent with the existence of an
A ⊆ ω1 such that inL[A] there is no semiproper forcing notion that codesA by a real. Similar
equiconsistency results are established for other classes of forcing notions.

Reviewed byAndŕes Eduardo Caicedo
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