A review of sharps

Andrés Eduardo Caicedo

We hope this short note may prove useful as a guide to the general theory of sharps. Only a knowledge of the theory of 0^{\sharp} is required. This note will be updated periodically, the original version was part of the introduction to the author's dissertation [1], written under the supervision of John Steel and Hugh Woodin at U.C. Berkeley.

Definition 0.1. Let Y be a transitive set.

1. A class of indiscernibles for L(Y), Y (informally, for L(Y)) is a class $I \subseteq ORD$ such that for all \vec{a} elements of Y and all $\alpha_1 < \cdots < \alpha_n$ and $\beta_1 < \cdots < \beta_n$ elements of I, for any $\varphi(\vec{x}, y_1, \ldots, y_n)$ in the language of set theory,

$$L(Y) \models \varphi(\vec{a}, \vec{\alpha}) \iff L(Y) \models \varphi(\vec{a}, \vec{\beta}).^{1}$$

2. Let $\varphi(t, x_1, \ldots, x_n)$ be a formula in the language of set theory, expanded with constant symbols for Y and the elements of Y. A weak Skolem function for φ (with respect to L(Y), Y) is the function $f_{\varphi}: {}^{n}L(Y) \to L(Y)$ given by

$$f_{\varphi}(\vec{x}) = \left\{ \begin{array}{ll} y & \quad \text{if } L(Y) \models y \text{ is the unique } z \text{ such that } \varphi(z,\vec{x}); \\ \emptyset & \quad \text{if there is no such unique } z. \end{array} \right.$$

- 3. Let $Y \subseteq Z \subseteq L(Y)$. By $\mathcal{H}(L(Y), Z)$ we mean the closure of Z under weak Skolem functions.
- 4. Let I be a class of indiscernibles for L(Y), Y. We say that I generates L(Y) iff

$$\mathcal{H}(L(Y), I \cup Y) = L(Y).$$

- 5. We say that Y^{\sharp} exists iff there is a club proper class I of indiscernibles for L(Y), Y such that $I \cup Y$ generates L(Y) and, moreover, for any uncountable η such that $Y \in H_{\eta}$, $\mathcal{H}(L(Y), (I \cap \eta) \cup Y) = L_{\eta}(Y)$.
- 6. We say that X^{\sharp} exists iff Y^{\sharp} exists, where Y = Tr. Cl.(X).

Fact 0.2. If $X \in H_{\eta}$ and η is Ramsey, then X^{\sharp} exists. \square

¹We consider the language of L(Y) to be expanded by constants P_a for each $a \in Y \cup \{Y\}$. The natural interpretation of P_a is, of course, the set a.

The assertion " X^{\sharp} exists" refers to the existence of a proper class object. Solovay's realization (see [2]) is that just as in the case of sharps for reals, this is in fact equivalent to the existence of a set, and it is this set what we now call X^{\sharp} .

Definition 0.3. Let Y be transitive.

- 1. Let \mathcal{L}_Y denote the language of set theory augmented with constants for the elements of $Y \cup \{Y\}$, and with ω many other constants c_n , $n \in \omega$, (to represent the first ω indiscernibles), and closed under terms for weak Skolem functions for formulas in the language of set theory.
- 2. An *EM blueprint* for Y (EM stands for Ehrenfeucht-Mostowski) is the theory in \mathcal{L}_Y of some structure $(L_{\eta}(Y), \in, P_a, i_n : a \in Y \cup \{Y\}, n \in \omega)$ where $Y \in H_{\eta}$ or $\eta = \text{ORD}$, and $\langle i_n : n < \omega \rangle$ is the increasing enumeration of a set of indiscernibles for

$$(L_{\eta}(Y), \in, P_a)_{a \in Y \cup \{Y\}}.$$

- 3. Let Σ be an EM blueprint for Y, and let α be an ordinal. By $\Gamma(\Sigma, \alpha)$ we mean, provided that it exists and is unique (up to isomorphism), a model \mathcal{M}_{α} such that
 - (a) $\mathcal{M}_{\alpha} \models \Sigma^*$, the restriction of Σ to the language \mathcal{L}'_Y without constants for the indiscernibles.
 - (b) There is a set $I \subset \text{ORD}^{\mathcal{M}_{\alpha}}$ such that $(I, \in^{\mathcal{M}_{\alpha}}) \cong (\alpha, \in)$ which is a set of indiscernibles for \mathcal{M}_{α} .
 - (c) $\mathcal{H}(\mathcal{M}_{\alpha}, I \cup \{P_a^{\mathcal{M}_{\alpha}} : a \in Y \cup \{Y\}\}) = \mathcal{M}_{\alpha}$.
- 4. A set of sentences $\Sigma \subseteq \mathcal{L}_Y$ is a remarkable character for Y iff
 - (a) Σ is an EM blueprint for Y. In fact, Σ extends "ZF + V = L(Y)".
 - (b) $\Gamma(\Sigma, \alpha)$ exists and is well-founded for all α .
 - (c) For any term $t(x_0, \ldots, x_{n-1})$ in \mathcal{L}_Y , the sentence

"
$$t(c_0, \ldots, c_{n-1}) \in \text{ORD} \longrightarrow t(c_0, \ldots, c_{n-1}) < c_n$$
"

belongs to Σ .

(d) For any term $t(x_0, \ldots, x_{m+n})$ in \mathcal{L}_Y , the sentence

belongs to Σ .

(e) Σ satisfies the witness condition:

Whenever $\exists x \, \varphi(x) \in \Sigma$, there is a term t all of whose constants for indiscernibles already appear on $\varphi(x)$, and such that $\varphi(t) \in \Sigma$.

The witness condition is the key condition that remarkable characters for reals (or more generally for sets of ordinals) satisfy automatically, because Skolem terms are definable in L[x], $x \in \mathbb{R}$, since L[x] has a definable well-ordering. Its importance lies in that it allows us to prove the following basic fact:

Lemma 0.4 (Solovay). If Σ is a remarkable character for a transitive set Y, then

1. For all α , the sequence I^{α} of indiscernibles of $\Gamma(\Sigma, \alpha)$ with

$$(I^{\alpha}, \in^{\Gamma(\Sigma, \alpha)}) \cong (\alpha, \in)$$

satisfies that for any formula $\varphi(x_1,\ldots,x_n)$ in the language \mathcal{L}'_Y ,

$$\varphi(c_1,\ldots,c_n)\in\Sigma$$

iff there is $a \in \Gamma(\Sigma, \alpha)$ -increasing sequence a_1, \ldots, a_n of elements of I^{α} such that $\Gamma(\Sigma, \alpha) \models \varphi(a_1, \ldots, a_n)$.

2. For any cardinal η such that $Y \in H_{\eta}$,

$$\Gamma(\Sigma, \eta) \cong L_{\eta}(Y).$$

- 3. For all α , I^{α} is closed unbounded in $ORD^{\Gamma(\Sigma,\alpha)}$.
- 4. If $\alpha < \beta$, then I^{β} end-extends I^{α} (seen as subsets of $ORD^{L_{\eta}(Y)}$ for any cardinal η such that $\beta, Y \in H_{\eta}$.)
- 5. For any η such that $Y \in H_{\eta}$,

$$\mathcal{H}(L(Y), I^{\eta} \cup Y) = L_{\eta}(Y) \prec \mathcal{H}(L(Y), \bigcup_{\alpha} I^{\alpha} \cup Y) = L(Y).$$

6. Let Σ' be any remarkable character for Y. Then $\Sigma' = \Sigma$. \square

Corollary 0.5 (Solovay). Let Y be transitive. Then Y^{\sharp} exists iff there is a remarkable character for Y. \square

Remark 0.6. In truth, Solovay only argued these results for sharps of sets of reals (or, more precisely, for \mathbb{R}^{\sharp}), but the arguments for 0^{\sharp} lift straightforwardly.

It follows that it makes sense to define sharps in terms of the remarkable characters whose existence they guarantee:

Definition 0.7. Let X be a set and let Y be its transitive closure. Then $X^{\sharp} := \Sigma$, for Σ the unique remarkable character for Y.

See [2], where the general notion of sharps is introduced, in the context of subsets of reals.

Notice the definition of Y^{\sharp} is absolute in the sense that if $W\supseteq V$ is an outer model and $Y^{\sharp}\in V$, then

$$W \models (Y^\sharp)^V = Y^\sharp.$$

The following is ancient, but I have been unable to find a reference:

Fact 0.8. Let \mathbb{P} be a poset, and suppose $x^{\sharp} \in V^{\mathbb{P}}$, where x is a real coding a set $X \in V$. Then $X^{\sharp} \in V$. \square

It follows from the fact that Jensen's covering lemma relativizes to all sharps, so L[X] satisfies covering above η , where $X \in H_{\eta}$, iff X^{\sharp} does not exist. Since set sized forcing preserves a tail of the class of cardinals, if \mathbb{P} is a poset and X^{\sharp} exists in $V^{\mathbb{P}}$, then X^{\sharp} exists in V.

Fact 0.9 (Solovay). If X^{\sharp} exists, then the truth sets of L(X) and L[X] are definable. \square

The following example must be folklore, it was shown to me by Woodin. It illustrates that we cannot make do in the definition of X^{\sharp} without the witness condition:

Recall first that after adding ω_1 Cohen reals, no well-ordering of \mathbb{R} belongs to $L(\mathbb{R})$. This follows immediately from the weak homogeneity of the forcing, call it \mathbb{P} , and the fact that \mathbb{P} is ccc and $\mathbb{P} \cong \mathbb{P} \times \mathbb{P}$. From this, an elementary argument shows that, in fact, there is in $V^{\mathbb{P}}$ a set $\mathbb{R}_1 \subsetneq \mathbb{R}^{V^{\mathbb{P}}}$ and an elementary embedding $j: L(\mathbb{R}_1) \to L(\mathbb{R}^{V^{\mathbb{P}}})$ that fixes the ordinals, so in particular Choice fails in $L(\mathbb{R}^{V^{\mathbb{P}}})$ and the result follows.

Claim 0.10. Let $V=L[\mu]$ be the smallest inner model for a measurable cardinal and let G be $Add(\omega, \omega_1)$ -generic over V. Then

- 1. $(\mathbb{R}^{\sharp})^{V[G]}$ exists.
- 2. $(\mathbb{R}^{\sharp})^{V[G]} \cap V \in V$.
- 3. $(\mathbb{R}^{\sharp})^{V[G]} \cap V$ satisfies conditions 4.(a)-(d) of Definition 0.3 for $(\mathbb{R}^{\sharp})^{V}$.

If we could dispense with the witness condition in Definition 0.3, it would follow from the claim that $\mathbb{R}^{L[\mu]}$ is not well-orderable by a well-ordering in $L(\mathbb{R})^{L[\mu]}$. This is absurd, since in fact $\mathbb{R}^{L[\mu]}$ admits a Δ_3^1 -well-ordering.

Remark 0.11. Of course, the same arguments generalize to larger sharp-like objects, like daggers or pistols.

The theory of sharps is usually recalled in connection with finestructural arguments. In this context, X^{\sharp} is usually defined as a particular kind of mouse.

Fact 0.12. Let X be a set. Then X^{\sharp} exists iff there is an active X-mouse. \Box

There is therefore no lack of generality in using this approach. We actually obtain quite more information than what was stated in Fact 0.12. For example, by standard techniques a mouse as in 0.12 is unique if it exists, and so we can identify it with X^{\sharp} . Moreover, for example if $x \in \mathbb{R}$, x^{\sharp} and the minimal active x-mouse share the same Turing degree.

References

- [1] A. Caicedo. Simply definable well-orderings of the reals, Ph. D. Dissertation, Department of Mathematics, University of California, Berkeley (2003).
- [2] R. Solovay. The independence of DC from AD, in Cabal Seminar 76–77: Proceedings, Caltech-UCLA logic seminar 1976–77, A. Kechris and Y. Moschovakis, eds., Springer-Verlag (1978), 171–183.