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Summary: Assume AD™ and that either V = L(P()), or V = L(T,) for some set T C ORD. Let (X, <)
be a pre-partially ordered set. Then exactly one of the following cases holds: (1) X can be written as a
well-ordered union of pre-chains, or (2) X admits a perfect set of pairwise <-incomparable elements, and
the quotient partial order induced by (X, <) embeds into (2%, <jex) for some ordinal o, or (3) there is an
embedding of 2 /Fy into (X, <) whose range consists of pairwise <-incomparable elements.

By considering the case where < is the diagonal on X, it follows that for any set X exactly one of the
following cases holds: (1) X is well-orderable, or (2) X embeds the reals and is linearly orderable, or (3)
2¥/Ey embeds into X. In particular, a set is linearly orderable if and only if it embeds into P(«a) for
some a. Also, w is the smallest infinite cardinal, and {wy, } is a basis for the uncountable cardinals.

Assuming the model has the form L(T,) for some T C ORD, the result is a consequence of ZF + DC
together with the existence of a fine o-complete measure on P,,, () via an analysis of Vopénka-like forcing.
It is known that in the models not covered by this case, AD holds. The result then requires more of
the theory of determinacy; in particular, that V' = OD((< ©)“), and the existence and uniqueness of
supercompactness measures on P, () for v < ©.

As an application, we show that (under the same basic assumptions) Scheepers’s countable-finite game
over a set S is undetermined whenever S is uncountable.

For the entire collection see [Zbl 1205.03004].

MSC:

03E60 Axiom of determinacy, etc.
03E25 Axiom of choice and related propositions (logic)
03C20 Ultraproducts and related constructions
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