

Caicedo, Andrés Eduardo; Ketchersid, Richard

A trichotomy theorem in natural models of AD⁺. (English) Zbl 1245.03079

Babinkostova, L. (ed.) et al., Set theory and its applications. Annual Boise extravaganza in set theory, Boise, ID, USA, 1995–2010. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-4812-8/pbk). Contemporary Mathematics 533, 227-258 (2011).

Summary: Assume AD^+ and that either $V = L(\mathcal{P}())$, or V = L(T,) for some set $T \subset ORD$. Let (X, \leq) be a pre-partially ordered set. Then exactly one of the following cases holds: (1) X can be written as a well-ordered union of pre-chains, or (2) X admits a perfect set of pairwise \leq -incomparable elements, and the quotient partial order induced by (X, \leq) embeds into $(2^{\alpha}, \leq_{lex})$ for some ordinal α , or (3) there is an embedding of $2^{\omega}/E_0$ into (X, \leq) whose range consists of pairwise \leq -incomparable elements.

By considering the case where \leq is the diagonal on X, it follows that for any set X exactly one of the following cases holds: (1) X is well-orderable, or (2) X embeds the reals and is linearly orderable, or (3) $2^{\omega}/E_0$ embeds into X. In particular, a set is linearly orderable if and only if it embeds into $\mathcal{P}(\alpha)$ for some α . Also, ω is the smallest infinite cardinal, and $\{\omega_1, \}$ is a basis for the uncountable cardinals.

Assuming the model has the form L(T,) for some $T \subset ORD$, the result is a consequence of ZF + DC together with the existence of a fine σ -complete measure on $\mathcal{P}_{\omega_1}()$ via an analysis of Vopěnka-like forcing. It is known that in the models not covered by this case, AD holds. The result then requires more of the theory of determinacy; in particular, that $V = OD((<\Theta)^{\omega})$, and the existence and uniqueness of supercompactness measures on $\mathcal{P}_{\omega_1}(\gamma)$ for $\gamma < \Theta$.

As an application, we show that (under the same basic assumptions) Scheepers's countable-finite game over a set S is undetermined whenever S is uncountable.

For the entire collection see [Zbl 1205.03004].

MSC:

03E60 Axiom of determinacy, etc.

03E25 Axiom of choice and related propositions (logic)

03C20 Ultraproducts and related constructions