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Abstract

We show that if X is a set and A ⊆ [X]n is non-empty and contains at
most k pairwise disjoint elements, then a non-empty subset of X of cardi-
nality strictly less than kn2 is definable from A. We show that this result
is nearly best possible. We also study bounds on the size of intersecting
families of (≤ n)-element subsets from which no smaller such family can
be defined, and classify all families of this form for n = 3. Although
guided by definability considerations, our arguments are combinatorial in
nature.
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1 Introduction

Let X be a set, and let κ be a (possibly infinite) cardinal number. We say that
a family A ⊆ P(X) is an antichain iff

∀A,B ∈ A (A 6= B ⇒ A ∩B = ∅),

and we say that A satisfies the κ-chain condition, or simply A is κ-cc, iff it does
not contain an antichain of cardinality κ. If κ = 2, the set A is also called an
intersecting family ; if κ = ℵ0, we say that A is finite-cc. Notice that our notion
of antichain is more restrictive than the alternative condition that elements of
A be ⊆-incomparable.

Several results in diverse fields of mathematics depend on purely combinato-
rial principles. To name just two examples, Ramsey’s theorem was established
to prove a decidability result (and was rediscovered by Erdős and Szekeres to
prove a result in geometry), and the study of automorphism groups of strongly
regular graphs and Steiner triple systems played a role in the classification of
the finite simple groups. It is often the case that the combinatorial principles
behind results in other fields turn out to be interesting in their own right, and
that their deeper study provides us with further applications of these principles.

A recent result of Clemens-Conley-Miller [2] in the theory of definable equiv-
alence relations relies upon the ability to define finite sets in a canonical way
from (possibly infinite) intersecting families of finite sets. Our aim in this paper
is to investigate the purely combinatorial issues underlying the proof of this
result, and in particular to study the minimum size of sets definable from such
intersecting families. Extremal set theory, including the analysis of intersecting
families, is a well known area of study within combinatorics; the twist we add
is the consideration of definability conditions. This provides us with its own
advantages, such as access to techniques from mathematical logic, and its own
difficulties, such as the fact that probability arguments, Ramsey arguments, and
non-constructive proofs do not yet seem applicable within our framework.

In §1.1, we briefly discuss the result from Clemens-Conley-Miller [2] leading
to the combinatorial result that motivated this paper.

Definition 1.1. We denote by ξ : Z+ × Z+ → Z+ the map that assigns to
each pair (k, n) the least l such that every non-empty (k + 1)-cc family A of
n-element sets can be used to define a non-empty subset of

⋃
A of cardinality

at most l.

In §2, we show that ξ is well defined, and provide bounds on its value. For
this, we say that A is a low family iff no proper subset of

⋃
A or of A can be

defined from A; our bounds come from the study of low families.
In §3, we introduce the concept of minimal intersecting families A ⊆ [X]≤n.

This is analogous to the concept of low but now rather than asking that no
proper subset of X or A is definable, we ask that no smaller intersecting family
of (≤ n)-element subsets of X (which need not even be a subfamily of A) is
definable. Let ψ(n) be the size of the largest minimal family of (≤ n)-element
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sets. The arguments of §2 provide a super-exponential upper bound for ψ.
We also find a super-exponential lower bound. In §3.3, we classify all minimal
intersecting families of (≤ 3)-element sets. In particular, we show that if A is
such a family, then |A| ≤ 10, and show that there are exactly two non-isomorphic
families for which this bound is attained. The classification also implies that
ξ(1, 3) = 7, i.e., from any intersecting family of triples from a set X, one can
define a subset of X of size at most 7, but not necessarily one of size 6.

We close the body of the paper in §4 by studying low intersecting families.
We prove a lifting theorem that allows us to build larger low families from
smaller ones. We also adapt an argument from §3.3 to show that if A is a low
family of 3-element sets, then |A| ≤ 10.

Finally, we formalize in Appendix A the concept of definability that our
results deal with, and include the background material necessary to work with
it.

In the sequel Caicedo-Clemens-Conley-Miller [1] we address similar prob-
lems for families of countable sets, both combinatorially, and in the context of
descriptive set theory.

1.1 Application: A Glimm-Effros-style dichotomy

Recall that an equivalence relation E on a Polish space is said to be countable iff
each of its equivalence classes [x]E is countable. A reduction from an equivalence
relation E on X to another equivalence relation F on Y is a function π : X → Y
with the property that x1Ex2 ⇐⇒ π(x1)Fπ(x2), for all x1, x2 ∈ X. The
study of the Borel reducibility quasi-order (≤B) on the class of countable Borel
equivalence relations on Polish spaces has played an important role in descriptive
set theory over the last two decades.

A partial transversal of a countable Borel equivalence relation E is a set
which intersects every E-class in at most one point. We denote by IE the σ-ideal
consisting of those sets contained in the union of countably many Borel partial
transversals of E. We say that E is smooth if IE trivializes, i.e., if X ∈ IE . By
well-known results of classical descriptive set theory, such equivalence relations
are ≤B-minimal among all countable Borel equivalence relations on uncountable
Polish spaces.

A remarkable result, which goes back to work of Glimm-Effros in operator
algebras from the 1960s, is that there is a ≤B-minimal non-smooth countable
Borel equivalence relation on a Polish space. An example of such an equivalence
relation is E0 on {0, 1}N, which is given by

xE0y ⇐⇒ ∃n ∈ N ∀m ≥ n (x(m) = y(m)).

Speaking very roughly, this result is proved as follows. Given a countable Borel
equivalence relation E, there is a natural attempt at recursively building a
continuous injective reduction of E0 into E, which essentially entails trying to
build up copies of level-by-level approximations to E0 within E. If this attempt
fails to produce the desired reduction, then it necessarily provides a countable
family of Borel partial transversals whose union is X, thus E is smooth.
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Given both the central nature of the σ-ideal IE in this proof, as well as
its alternative characterization as the σ-ideal generated by the Borel sets on
which E is ≤B-minimal, it is natural to ask for the extent to which IE deter-
mines the ≤B-class of E. An answer to this question has been provided by
Clemens-Conley-Miller [2], where it is showed that the existence of a Borel ho-
momorphism from IE to IF is equivalent to the existence of a smooth-to-one
Borel homomorphism from E to F (we refer the reader to Clemens-Conley-
Miller [2] for the exact definitions). While the latter notion is strictly weaker
than Borel reducibility, it does agree with Borel reducibility when restricted to
several of the most important classes of countable Borel equivalence relations.

Lying at the heart of the Clemens-Conley-Miller [2] result is the fact that
if E is a countable Borel equivalence relation on X, F is a countable Borel
equivalence relation on Y , and φ : X → Y is Borel, then either there is a
Borel perturbation of φ which is a homomorphism from IE to IF , or else there
is a continuous injective reduction π of E0 into E with the property that the
points of the form φ ◦ π(x), for x ∈ 2N, are pairwise F -inequivalent. The proof
resembles that of the Glimm-Effros theorem. Again, there is a natural attempt
at recursively building the desired reduction of E0 to E. This attempt fails if X
is in the σ-ideal Iφ generated by the Borel sets B ⊆ X which have the property
that for some finite set Γ of Borel automorphisms whose graphs are contained
in E, the collection of sets of the form {[φ(γ · x)]F : γ ∈ Γ}, for x ∈ B, is an
intersecting family. In this case, one then obtains the desired Borel perturbation
of φ by appealing to the fact that there is a Borel way of defining finite sets
from intersecting families, which easily follows from the purely combinatorial
result which we study in this paper.

1.2 Acknowledgements

The first author wants to thank the National Science Foundation for partial
support through grant DMS-0801189.

2 Intersecting families of finite sets

Given a set X and a cardinal κ, let [X]κ = {A ⊆ X : |A| = κ}, [X]<κ = {A ⊆
X : |A| < κ}, and [X]≤κ = {A ⊆ X : |A| ≤ κ}. We write [X]<N for [X]<ℵ0 . For
each family A ⊆ P(X) and D ⊆ X, let degA(D) denote |{A ∈ A :D ⊆ A}|.
We often write degA(x) instead of degA({x}). An A-extension of D (or simply
an extension of D) is any A ∈ A with D ⊆ A.

For m a positive integer, and finite l, let

A(m,l) = {D ∈ [X]m : degA(D) > l}.

Notice that A(m,l) is definable from A.

Example 2.1. Suppose that A ∩ B = ∅ and |A| ≥ |B| = 3. Let A denote the
family of sets of the form {a} ∪ (B \ {b}), for a ∈ A and b ∈ B. Then A is
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an intersecting family of 3-element sets and A(2,2) is an intersecting family of
2-element sets.

Fact 2.2. Suppose A ⊆ [X]<N is finite-cc. Then A is (k + 1)-cc for some
k ∈ Z+.

Proof. Let B ⊆ A be a maximal antichain, and let k = |
⋃
B|. Let C ∈ [A]k+2.

Every non-empty A ∈ C contains an element of
⋃
B by maximality of B, so at

least two members of C have an element in common, and C is not an antichain.
Of course, k + 2 can be replaced with k + 1 if ∅ /∈ A.

Remark 2.3. Our assumption that the members of A are finite cannot be
relaxed in Fact 2.2. To see this, for each k ∈ Z+ let Ak1, . . . , Akk be a partition
of N into k infinite sets such that if k < l then Aki ∩ Alj is infinite for each
i, j. Then A = {Aki : k ∈ Z+, 1 ≤ i ≤ k} is finite-cc but not (k + 1)-cc for any
k ∈ Z+.

For each non-empty (k + 1)-cc A ⊆ [X]n and for each m ≤ n, let dm =
supD∈[X]m degA(D). In particular, dn = 1. Let

Am = A(m,(kn)dm+1) = {D ∈ [X]m : degA(D) > (kn)dm+1}.

Lemma 2.4. Suppose that A ⊆ [X]n is (k + 1)-cc. Then for each m < n, Am
is (k + 1)-cc (but possibly empty). Furthermore, if Am 6= ∅ and Ak = ∅ for all
k > m, then Am is definable from A.

Proof. Suppose, towards a contradiction, that there exist pairwise disjoint

D0, . . . , Dk ∈ Am.

We inductively construct A0, . . . , Ak ∈ A such that for each i ≤ k:

1. Ai is an extension of Di,

2. for all j > i, Dj ∩Ai = ∅, and

3. for all j < i, Aj ∩Ai = ∅.

Suppose we have found A0, . . . , Ai−1 satisfying the above conditions. Notice
that for any x ∈ X \ Di, at most dm+1 extensions of Di contain x, or else
degA(Di ∪ {x}) > dm+1. Consequently, no more than (kn)dm+1 extensions of
Di can meet

⋃
j<iAj ∪

⋃
j>iDj , so there exists an extension Ai of Di disjoint

from
⋃
j<iAj ∪

⋃
j>iDj , completing this step of the construction. Of course,

{A0, . . . , Ak} is an antichain of size k + 1, contradicting the fact that A is
(k + 1)-cc.

It remains to show that if m < n is largest such that Am 6= ∅, then Am is
definable from A. For this, argue by induction on n−m that each di, m < i ≤ n,
is finite. In particular, dm+1 is finite, and the result follows.

Proposition 2.5. Suppose that A ⊆ [X]n is (k+1)-cc. Then there exists a non-
empty (k+1)-cc family A′ ⊆ [X]≤n definable from A with |A′| ≤ (kn)n−kn+k.
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Proof. The result is clear when n = 1 (with A′ = A). We proceed by induction
on n. If for some m < n, Am is non-empty, definable and (k + 1)-cc, then the
conclusion follows from the inductive hypothesis. Thus, by Lemma 2.4, we may
assume that for all m < n, Am is empty. That is, for all m < n, dm ≤ (kn)dm+1

and, in particular, d1 ≤ (kn)n−1. Fix a maximal antichain {A0, . . . , Ak′−1} in
A, where k′ ≤ k. Every point in

⋃
i<k′ Ai is contained in at most (kn)n−1 − 1

additional sets in A. Since every set in A intersects this maximal antichain, we
have |A| ≤ (k′n)((kn)n−1 − 1) + k′, thus |A| ≤ (kn)n − kn+ k.

In particular, Proposition 2.5 implies the (crude) bound

ξ(k, n) ≤ n((kn)n − kn+ k),

where ξ is as in Definition 1.1. We now give an improved bound as a function
of k, n, and d1.

Proposition 2.6. Suppose that A ⊆ [X]n is (k + 1)-cc with d1 finite, and let
Y = {x ∈ X : degA(x) = d1}. Then

|Y | ≤ k(n2 − (n/d1)(n− 1)).

Proof. Simply observe that

d1|Y |
n

≤ 1
n

∑
x∈X

degA(x)

= |A|
≤ k(1 + n(d1 − 1)),

thus |Y | ≤ k(n2 − (n/d1)(n− 1)).

As a corollary, we see that ξ(k, n) ≤ kn2 − 1, which is a quantitative im-
provement of the observation of Clemens-Conley-Miller [2] that gave rise to this
paper:

Theorem 2.7. Suppose that k and n are positive integers.

1. Suppose that A ⊆ P(X) is finite-cc, A∩ [X]n 6= ∅, and A∩ [X]n admits a
maximal antichain of size k. Then a non-empty subset of X of cardinality
at most kn3 − 1 is definable from A.

2. If A ⊆ [X]n is (k + 1)-cc, then a non-empty subset of X of cardinality at
most kn2 − 1 is definable from A.

Proof. We prove (1); the argument for (2) is identical. By replacing A with
A ∩ [X]n, we can assume that A ⊆ [X]n. By Fact 2.2, A is (kn + 1)-cc. By
Proposition 2.5, we can assume that d1 is finite, and Proposition 2.6 then gives
the desired result.
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Corollary 2.8. Suppose that A ⊆ [X]<N and that there exist non-empty (not
necessarily definable) sets A0,A1 such that A = A0 ∪ A1 and for all A0 ∈ A0

and A1 ∈ A1, A0 ∩ A1 6= ∅. Then there is a non-empty, finite subset of X
definable from A.

Proof. Notice that the assumption ensures that ∅ /∈ A. In light of Theorem
2.7.1, it suffices to show that A is finite-cc. For this, simply note that any
antichain C is contained in Ai for some i ∈ {0, 1}. Since every element of C
intersects every A ∈ A1−i, we see that |C| ≤ |A| for any such A.

Remark 2.9. The proof of Corollary 2.8 in fact shows that we can find a
definable set of size at most

(max
i<2

min
A∈Ai

|A|)(min
A∈A
|A|)2 − 1.

We now show that the bound of kn2−1 from Theorem 2.7.2 is best possible,
in the sense that we cannot replace it with εkn2 for any 0 < ε < 1, using some
well-known examples from the study of combinatorial designs.

Recall that the notion of low was introduced in Definition A.7. Notice that⋃
A is definable from A, so if A is low, then X =

⋃
A. We say that A has

degree k iff ∀x ∈ X (degA(x) = k). If the degree of A is defined (for example,
if A is low), then A is called regular.

Theorem 2.10. Suppose that k and n are positive integers.

1. There is a set X of cardinality k(n2/2 + n/2) and a low (k+ 1)-cc family
A ⊆ [X]n of degree 2.

2. If n− 1 is a power of a prime, then there is a set X of cardinality k(n2 −
n+ 1) and a low (k + 1)-cc family A ⊆ [X]n of degree n.

Proof. We will handle only the case that k = 1, as the general case follows by
taking the disjoint union of k copies of the examples we describe. To see (1),
let I = {0, 1, . . . , n} and X = [I]2. Then

|X| = n2/2 + n/2.

For each i ∈ I, define
Ai = {x ∈ X : i ∈ x},

so |Ai| = n and
A = {Ai : i ∈ I} ⊆ [X]n

is an intersecting family of degree 2 since if x = {i, j} ∈ X, then Ai ∩Aj = {x}
and x ∈ Ak ⇐⇒ k ∈ x. To see that A is low, define

G = {g ∈ SX : ∃σ ∈ SI ∀{i, j} ∈ X (g · {i, j} = {σ · i, σ · j})},

and observe that G ≤ Aut(A) and G acts transitively on X and A.
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To see (2), set q = pk = n− 1. Let Fq be the field of size q, and let V be a
vector space of dimension 3 over Fq.

Let
X = {W ≤ V : dimW = 1},

so
|X| = (q3 − 1)/(q − 1) = q2 + q + 1 = n2 − n+ 1,

since two non-zero vectors x and y on V determine the same line W iff there is
k ∈ Fq \ {0} such that x = ky.

For Y ≤ V of dimension 2, let Ȳ = {W ≤ Y : dimW = 1} and set

A = {Ȳ :Y ≤ V,dimY = 2}.

Notice that

|Ȳ | = q2 − 1
q − 1

= q + 1 = n.

We can endow V with a formal inner product by fixing an arbitrary basis
B of V over Fq and setting x · y =

∑
i xiyi where 〈x1, x2, x3〉 and 〈y1, y2, y3〉

are the coordinates of x and y, respectively, with respect to the basis B. The
map that sends W to its orthogonal complement is a one-to-one correspondence
between spaces W of dimension 1 and spaces Y of dimension 2, so

|A| = |X|.

Clearly, A is intersecting. Given W of dimension 1 and Y of dimension
2, let Y⊥ be the orthogonal complement of Y and let W⊥ be the orthogonal
complement of W . Then W ∈ Ȳ iff Y = (W⊥)⊥, so

degA(W ) = |W⊥| = n.

(For k = 1, what we are describing should remind the reader of a well known
Steiner S(2, p− 1, p2 + p+ 1) system, see van Lint-Wilson [6].) To see that A is
low, define

G = {g ∈ SX : ∃T ∈ GL3(Fq)∀W ∈ X (g ·W = TW )},

and observe that G ≤ Aut(A) and G acts transitively on X and A.

Example 2.11. When n = 3 and k = 1, Theorem 2.10.2 provides us with a
low intersecting family of triples with |X| = 7, the Fano plane. This can also
be described by letting X = Z/7Z and taking as A the family of translations of
{0, 1, 3}:

A = {013, 124, 235, 346, 450, 561, 602}.

This shows that ξ(1, 3) ≥ 7. We in fact have equality, see Proposition 3.41.
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3 Minimal intersecting families

For the remainder of the paper, we confine our attention to intersecting families.
In the previous section we found bounds for the smallest size of a subset of X
definable from A, where A ⊆ [X]n is intersecting. This was done in two stages;
in the first, we found a finite intersecting A′ ⊆ [X]≤n definable from A. In the
second, we started from such a finite A′ and found bounds on the size of subsets
of X definable from A′ (and therefore, from A). Here we address the question
of how small we can find A′ itself.

Definition 3.1. An intersecting family A ⊆ [X]≤n is n-minimal (or, simply,
minimal if n is clear from context) iff there is no intersecting B ⊆ [X]≤n definable
from A with |B| < |A|.

Remark 3.2. Given a set X and intersecting families A0,A1 ⊆ P(X), the
relation “A0 is definable from A1” is a quasi-order. It is not a partial order
since, for example, if X = {0, 1, 2}, then [X]2 and [X]3 can both be defined
from each other.

If A is minimal, we may assume
⋃
A = X, so we adopt this convention

(often without comment) in what follows; this is a minor technicality intended
to avoid situations like the following: We could have a set X of size at least 10,
let Y ⊂ X have size 5, and let A = [Y ]3. Then A is 3-minimal and of size 10.
We have that

⋃
A = Y and [X \Y ]3 is definable from A; moreover, if |X| = 10,

then [X \Y ]3 is intersecting and of size 10 as well. Obviously, X \Y has nothing
to do with the combinatorics of A, so we prefer to discard it rather than having
to pay attention to its size.

Notice that if A ⊆ [X]≤n is minimal, then there is m ≤ n such that A ⊆
[X]m.

Definition 3.3. Let ψ(n) be the largest possible size of an n-minimal intersect-
ing family of sets. A family A ⊆ [X]≤n is said to be n-large (or, simply, large if
n is clear from context) if it is intersecting, minimal, and has size ψ(n).

Notice that ψ(n) is finite for all n. In fact, ψ(n) ≤ nn−n+1, by Proposition
2.5.

3.1 Examples

Example 3.4. Let X = {1, . . . , 2n− 1} and A = [X]n. Then A is intersecting,
low and minimal. Hence (

2n− 1
n

)
≤ ψ(n).

It follows that ψ(2) ≥ 3 and ψ(3) ≥ 10. It is easy to see that, in fact, ψ(2) = 3.

Example 3.5. Besides the family of 3-element subsets of a set of size 5, there is
another example of a minimal family of triples of size 10: LetX = {a, b, c, d, e, f}
and consider the family

A = {abc, abf, ace, ade, bcd, bde, bef, cdf, cef}.
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To see that A is minimal, first we show that it is low. For this, it suffices
to consider the subgroup of Aut(A) generated by the permutations π1 and π2,
where

• π1(a) = b, π1(b) = e, π1(c) = d, π1(d) = a, π1(e) = c and π1(f) = f , and

• π2(a) = c, π2(b) = d, π2(c) = f , π2(d) = a, π2(e) = e and π2(f) = b.

That is, when presented in cycle notation,

• π1 = (abecd)(f), and

• π2 = (acfbd)(e).

But then it follows that A is minimal: Suppose that B ⊆ [X]≤3 is intersecting
and definable from A. If B ∩ [X]≤2 6= ∅, then from B ∩ [X]≤2 (and, therefore,
from A) we can define a non-empty subset of X of size at most 3, contradicting
that A is low. Thus, B ⊆ [X]3. If B∩A 6= ∅ then B∩A = A, since A is low, but
then |B| ≥ |A|. So we may assume that B ∩A = ∅. But then, again considering
〈π1, π2〉, B ⊇ [X]3 \ A, so |B| = 10 = |A|. (Notice that [X]3 \ A is intersecting
and definable from A, so this last possibility occurs.)

Notice that under the action of SX on P(P(X)), the permutation π given
by

π(a) = d, π(b) = e, π(c) = f, π(d) = a, π(e) = b, π(f) = c

(i.e., π = (ad)(be)(cf)) exchanges A and B, showing that ÂX and B̂X are
isomorphic.

Example 3.6. The previous example is a particular case of a more general
construction of intersecting families, which is worth considering in some detail.
Fix n and let X = {0, 1, . . . , 2n − 1}. Let A ⊂ [X]n be such that for any
A ∈ [X]n either A or X \A is not in A. Then A is intersecting and

|A| ≤ 1
2

(
2n
n

)
=
(

2n− 1
n

)
.

If we want A to be of maximal size and minimal, our choice as to which one of
A and X \ A belongs to A needs to be sufficiently uniform. For example, let
n = 3. For A ⊆ X let

∑
A =

∑
x∈A x. Since

∑
X = 15 is odd, we can define

an A of maximal size by letting

A = {A ∈ [X]3 :
∑

A is even}.

However, this A is neither minimal nor low, since degA(0) = 4 while degA(1) =
6.

We can use a similar idea to produce (at least for n = 3) families that are
actually minimal. Once again, let n be arbitrary and notice that for any A ⊆ X,∑
A+

∑
(X \A) = n(2n−1), so

∑
A+

∑
(X \A) ≡ 0 (mod n). If n is odd, we

can then fix a set S such that for all i 6= 0, exactly one of i,−i is in S (mod n).
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Then we would want to take A = {A ∈ [X]n :
∑
A ∈ S (mod n)}. However,

this does not take care of the case when
∑
A ≡

∑
(X \A) ≡ 0 (mod n), but in

that case, since n(2n−1) is an odd multiple of n, exactly one of
∑
A,
∑

(X \A)
is an odd multiple of n. So we just choose one of these options and put the
corresponding set into A.

Applying this idea to the case n = 3 we obtain the following families:

• {A ∈ [X]3 :
∑
A ≡ 1 (mod 3) or

∑
A ≡ 3 (mod 6)}.

• {A ∈ [X]3 :
∑
A ≡ 2 (mod 3) or

∑
A ≡ 3 (mod 6)}.

• {A ∈ [X]3 :
∑
A ≡ 1 (mod 3) or

∑
A ≡ 0 (mod 6)}.

• {A ∈ [X]3 :
∑
A ≡ 2 (mod 3) or

∑
A ≡ 0 (mod 6)}.

It is easy to verify that these four families are all isomorphic to the family from
Example 3.5.

Leaving aside issues of minimality, this construction obviously generalizes to
larger odd values of n. However, it is not possible to do something like this and
obtain a minimal family for all even values of n:

Lemma 3.7. Let A ⊆ [X]≤n be minimal. Assume that |A| ≥
(
2n−1
n

)
and

|X| ≤ 4n− 3. Then A is low. If |A| >
(
2n−1
n

)
, the same holds for |X| ≤ 4n− 1.

Proof. Since A is minimal, by Lemma A.12, that A is not low is equivalent to
there being a non-empty proper subset of X definable from A. But, if there
were such a set A, either A or its complement would have size at most 2n − 2
(or at most 2n − 1 if |A| >

(
2n−1
n

)
). Without loss of generality, assume it is

A. Then the family of n-element subsets of A would be intersecting and of size
strictly smaller than A, contradicting minimality.

For example, it follows that for n = 4 we would need a family of 35 4-element
subsets of a set of size 8 where each element has the same degree d, but this
would imply that 8d = 4 × 35, a contradiction. (On the other hand,

(
2n−1
n

)
is

always even for odd n > 1.)
As for the question of whether A is regular, we can say the following: For

definiteness, let n = 2k − 1 and set S = {1, . . . , k − 1} and

A = {A ∈ [{0, . . . , 2n− 1}]n :
∑

A ∈ S (mod n) or
∑

A ≡ n (mod 2n)}.

The map i 7→ i+2 (mod 2n) is in Aut(A), so even numbers are indistinguishable,
and so are odd numbers. The map i 7→ n − i is an isomorphism between
ÂX and ÂcX that exchanges the roles of even and odd numbers. The map
i 7→ i+1 sends A to Ā = {A :

∑
A ∈ S (mod n) or

∑
A ≡ 0 (mod 2n)}, again

exchanging the roles of even and odd numbers. It follows that A is regular iff
|{A ∈ B : 0 ∈ A}| = |{A ∈ B : 1 ∈ A}|, where

B = {A ∈ [{0, . . . , 2n− 1}]n :
∑

A ≡ n (mod 2n)}.

However, examination of these families for small values of n has failed to
provide examples of regular collections A other than for n = 3.

11



3.2 The size of minimal families

Since minimal intersecting families are necessarily finite, in the current sub-
section we restrict our attention to finite intersecting families. Given a finite,
intersecting A ⊆ [X]≤n, recall that

d1 = max{degA(x) :x ∈ X}

and set
S1 := {x : degA(x) = d1}.

Question 3.8. Assume A ⊆ [X]≤n is large. Does it follow that A ⊆ [X]n?
Equivalently, is ψ (strictly) increasing?

Fact 3.9. Assume n > 1 and ψ(n) < ψ(n + 1). Let A ⊆ [X]n+1 be a minimal
intersecting family with |A| > ψ(n). Then degA(x) > 1 for all x ∈ X.

Proof. Otherwise, the collection B of sets Y ⊂ X of size n such that there is an
x ∈ X with degA(x) = 1 and Y ∪ {x} ∈ A is intersecting and definable from
A. From it, an intersecting family C of n-element subsets of X of size at most
ψ(n) can be defined, by definition of ψ. But since ψ(n) < |A|, this contradicts
minimality of A.

Note that if A is minimal, then m1 := |A ∩ S1| is independent of A ∈ A.

Lemma 3.10. Let A ⊆ [X]≤n be minimal, |A| ≥
(
2n−1
n

)
. Then |S1| ≥ 2n− 1,

with equality only if |A| =
(
2n−1
n

)
. If n > 1 then m1 > 1.

Proof. If |S1| < 2n−1 then [S1]n is intersecting and of size strictly smaller than
|A|, contradicting the minimality of A. If |A| >

(
2n−1
n

)
, then in fact |S1| ≥ 2n

by the same argument.
Assume m1 = 1. Fix x ∈ S1. There are at least 2n − 2 other points in S1,

so at least (2n − 2)d1 sets in A not containing x. Fix A ∈ A with x ∈ A. If
n > 1, these (2n− 2)d1 sets all meet A \ {x}, so one of the points of A \ {x} has
degree at least (2n− 2)d1/(n− 1) > d1, contradiction.

Fact 3.11. Let A be n-minimal, and let d1 = d1,1 > · · · > d1,k be the degrees
of elements of X. Set S1,i := {x : degA(x) = d1,i}.

1. Every A ∈ A has elements of each degree (so k ≤ n).

2. mi := |A ∩ S1,i| is independent of A ∈ A.

3.
d1,i|S1,i|
mi

= |A|.

Proof. The first two assertions are clear from the minimality of A. The last one
follows from a double counting argument:

d1,i|S1,i| =
∑
x∈S1,i

d1,i =
∑
x∈X

∑
A∈A

χS1,i
(x)χA(x)

=
∑
A

∑
x

χS1,i(x)χA(x) =
∑
A

|S1,i ∩A|

= mi|A|,

12



and we are done.

Fact 3.12. Assume that ψ(n − 1) < ψ(n). Let A ⊆ [X]≤n be a minimal
intersecting family with |A| > ψ(n− 1). Let

Sn−1 := {D ∈ [X]n−1 : degA(D) = dn−1}.

Then dn−1 ≤ n and if n > 2 and dn−1 = n, then Sn−1 is 3-cc.

Proof. That dn−1 ≤ n follows from Lemma 2.4 and the fact that |A| > ψ(n−1).
Assume now that dn−1 = n > 2 and that D1, D2, D3 ∈ Sn−1 are pairwise

disjoint. We can then find x1, x3 such that Di ∪{xi} ∈ A and xi /∈ D2, i = 1, 3.
Since dn−1 = n = |D3 ∪ {x3}| and any extension of D2 meets D3 ∪ {x3}, it
follows that, for any a ∈ D3, D2 ∪{a} ∈ A and therefore it meets D1 ∪{x1}, so
x1 = a. But this contradicts the fact that |D3| = n− 1 > 1.

At this point, it is worth mentioning a reformulation of Lemma 2.4 for finite
intersecting families A. We first generalize a notion introduced earlier.

Definition 3.13. Let A ⊆ [X]≤n. For m ≤ n let

Sm = {D ∈ [X]m : degA(D) = dm}.

Since for all m < n, dm ≤ |A|, every Sm is definable from A. With the
nuisance of definability out of the way, Lemma 2.4 can be stated much more
simply:

Lemma 3.14. Let A ⊆ [X]n be intersecting and finite. For all m < n at least
one of the following holds:

1. Sm is intersecting.

2. dm ≤ ndm+1.

The above suggests that the larger A is, the smaller X seems required to be,
if we want A to be minimal. This intuition is not completely accurate, as the
remainder of this subsection shows.

Question 3.15. Is a large A ⊆ [X]≤n necessarily low?

Definition 3.16. A family A ⊆ [X]n is strongly minimal or sminimal iff Aut(A)
acts transitively on A and on [X]m for all m < n.

Question 3.17. If A is large, is it sminimal?

Theorem 3.18. Suppose A ⊆ [X]n is intersecting and |A| > ψ(n − 1). Then
the following are equivalent:

1. A is minimal.

2. For all A ∈ [X]≤n either A /∈ A and there is σ ∈ Aut(A) such that
A ∩ σ ·A = ∅, or else A ∈ [X]n and |Aut(A) ·A| ≥ |A|.

13



Proof. (1 ⇒ 2) Suppose A is minimal so, in particular, it is finite. Let A ∈
[X]≤n. Let B = BA := Aut(A) · A be the closure of A under Aut(A). By
Lemma A.12, B is definable from A and is contained in every subset of P(X)∪X
definable from A that contains A as an element. By minimality of A, either B
is not intersecting, which means that for some σ ∈ Aut(A), A∩σ ·A = ∅, or else
|B| = |Aut(A) ·A| ≥ |A|. In the first case, A /∈ A. Otherwise, B ⊆ A (since A is
clearly definable from A and contains A as an element), but B is not intersecting,
a contradiction. In the second case, it follows that |A| = n. Otherwise, there
is an intersecting family C of ≤ (n− 1)-element sets with |C| ≤ ψ(n− 1) < |A|
definable from B (and therefore from A), contradicting the minimality of A.

(2 ⇒ 1) Let A satisfy the second condition, and suppose A is not minimal.
Let B be an intersecting family of (≤ n)-element sets definable from A with
|B| < |A|. For any A ∈ B, BA ⊆ B, so BA is intersecting. It follows that |A| = n
and |BA| ≥ |A|, contradicting that |B| < |A|.

A similar argument gives the following sufficient condition for minimality:

Lemma 3.19. Let A ⊆ [X]n be intersecting. Suppose that Aut(A) is transitive
on A and for all B ∈ [X]≤n \ A there is a σ ∈ Aut(A) such that B ∩ σ ·B = ∅.
Then A is minimal.

Theorem 3.20. For all even n > 6, ψ(n) > (n/2)n/2 and there is a minimal
intersecting A ⊆ [X]n with |X| ≥ n2/4. In fact, for all rational p ∈ (0, 1), for
all but finitely many n such that pn is an integer, ψ(n) > (pn)(1−p)n+1.

Proof. Assume n = 2k is even. Let X =
⊔k
i=0Xi be the disjoint union of sets

Xi with |Xi| = k. For I ⊆ {0, . . . , k}, a transversal of
⋃
i∈I Xi is a set B such

that |B| = |I| and |B ∩ Xi| = 1 for each i ∈ I. Let A consist of all sets A of
the form Xi ∪ B where 0 ≤ i ≤ k and B is a transversal of

⋃
j 6=iXj . Thus,

|A| = (k + 1)kk > (n/2)n/2.
Notice that we may permute the index set of the disjoint union X =

⊔k
i=0Xi

and we may independently permute the elements of each Xi without changing
the structure of A. We thus have the following lemma.

Lemma 3.21. Aut(A) ≥ Sk+1 × (Sk)k+1 where Si is the symmetric group on
i letters.

Claim 3.22. Suppose k ≥ 4, 0 ≤ a0 ≤ a1 ≤ · · · ≤ ak ≤ k are integers, and∑k
i=0 ai ≤ 2k. Then exactly one of the following holds:

1. ∀i (ai + ak−i ≤ k).

2. a0 = a1 = · · · = ak−1 = 1 and ak = k.

Proof. If the first condition fails, for some i ≤ k/2 we must have ai + ak−i > k.
First we show that i = 0: If i = 1, then a1 + ak−1 > k and also a2 + ak > k,
since the aj are increasing. Since 2 < k− 1, this is a contradiction. Similarly, if
i ≥ 2, then k − 1 > k − i and ak + ak−1 > k, again a contradiction.
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Now we show that ak = k: Otherwise, say ak = k − j. Then a0 ≥ j + 1.
Then

∑
ai ≥ (j + 1)k + (k − i) ≥ 2k + (k − i) > 2k, a contradiction.

Since a0 = 1 ≤ ai ≤ ak = k for all i and
∑
aj ≤ 2k, it now follows that

a1 = · · · = ak−1 = 1 as well, and we are done.

To show that A is minimal, it suffices to verify that the condition of Lemma
3.19 holds. But this follows from Lemma 3.21 and Claim 3.22, letting (after a
renumbering if necessary) ai = |A ∩Xi| for A ∈ B for B a putative intersecting
family of ≤ n-element sets definable from A. The point is that if the ai satisfy
conclusion (1) of Claim 3.22, we can let σ be the following involution in SX : σ
exchanges setwise the blocks Xi and Xk−i for each i, and in such a way that
A∩Xi is disjoint from σ ·(A∩Xk−i), which is possible since ai+ak−i ≤ k = |Xi|.
Clearly, σ ∈ Aut(A), and A∩σ ·A = ∅, so B was not intersecting after all (recall
that B ⊇ BA, where BA is as in Theorem 3.18). Thus, the ai satisfy conclusion
(2) of Claim 3.22, so A ∈ A and since Aut(A) is transitive on A, B ⊇ A.

To prove the general version, consider now the collection A of sets A as
before, but with each block Xi of size pn and a total of 1 + (1 − p)n many
blocks. A modified version of the claim holds with essentially the same proof,
and this gives the result as well. For the sake of exposition, we state a slightly
weaker version of the modified statement: Consider blocks of size n − k (for
some fixed k) and a total of k + 1 blocks. Now we require in the claim that
0 ≤ a0 ≤ a1 ≤ · · · ≤ ak ≤ n−k and

∑
i ai ≤ n. The conclusion is that for almost

all values of n, either ai + ak−i ≤ n − k for all i, or else a0 = · · · = ak−1 = 1
and ak = n− k.

Corollary 3.23. For all n > 3, ψ(2n) > ψ(n).

Remark 3.24. Notice that the examples from Theorem 3.20 are low. Also,
Corollary 3.23 holds for all n since ψ(1) = 1, ψ(2) = 3, ψ(4) ≥

(
7
4

)
= 35, and

ψ(3) = 10 by Theorem 3.30 below.

Notice that if A ⊆ [X]n is intersecting, then so is

A+ = {B ∈ [X]n+1 : ∃A ∈ A (A ⊆ B)}.

If A is minimal and B ⊆ [X]≤n is intersecting and definable from A+, then |B| ≥
|A|, since A+ is itself definable from A. Hence, whether A+ is (n+ 1)-minimal
reduces to whether one can define from it a “small” intersecting subfamily of
[X]n+1.

Notice that |A+| < |A| is possible. For example, let us introduce the notation
[k]n to denote the collection of n-element subsets of {0, 1, . . . , k−1}. If A = [3]2,
then A+ = [3]3, and if A = [5]3, then A+ = [5]4.

Claim 3.25. If n is sufficiently large (n > 34 suffices) and A ⊆ [X]n is n-large,
then |A+| > |A|.

Proof. If n is even, by Theorem 3.20, |A| ≥ (n/2)n/2 > 4n >
(
2n+1
n

)
, so |

⋃
A| >

2n+ 1. If n is odd, a similar construction to that the one described in Theorem
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3.20 gives the same result: Now consider (n+1)/2 blocks, each of size (n−1)/2,
and consider the family C of sets that contain one of the blocks and meet the
others in exactly one point. This family C is n-minimal as in Theorem 3.20 and

|C| =
(
n+ 1

2

)(
n− 1

2

)n−1
2

.

Consider now the set C = {(A,B) ∈ A × A+ :A ⊆ B}. The result follows
from a double counting argument: since |

⋃
A| > 2n + 1, each A in A can

be extended to a B in A+ in more than n + 1 ways, so |C| > (n + 1)|A|.
On the other hand, each B ∈ A+ contains at most n + 1 members of A, so
|C| ≤ (n+ 1)|A+|.

If one can show that n-largeness ofA implies thatA+ is (n+1)-minimal, then
it follows that ψ(n) < ψ(n + 1). Some assumption on A is necessary, though.
For example, if A is the Fano plane, then A+ has size 28 and its complement
in [7]4 is also intersecting and has size 7, so A+ is not 4-minimal. To establish
minimality of A+, it seems that a better understanding of Aut(A) is required.

Remark 3.26. Notice that Aut(A) ≤ Aut(A+) since A+ is definable from A.

Question 3.27. If A is low, does it follow that A+ is also low?

3.3 Minimal families of triples

We compile lists of n-minimal families for n ≤ 3. Let Bn denote the collection
of n-minimal intersecting families of sets, considered up to isomorphism. Then
Bn forms a basis for intersecting families of (≤ n)-element sets in the sense
that given any intersecting A ⊆ [X]≤n there exists an isomorphic copy of some
A′ ∈ Bn which is definable from A.

Recall that [k]n denotes the set of n-element subsets of {0, 1, . . . , k − 1}.
Given a set of integers A ⊆ {0, 1, . . . , n− 1}, let An denote the family of trans-
lations of A taken modulo n so, for example, {013}7 is the Fano plane.

Theorem 3.28. Let L be the family from Example 3.5 and

AOct = {012, 045, 135, 234} ⊆ [6]3.

Then:

1. B1 = {[1]1},

2. B2 = {[1]1, [2]2, [3]2},

3. B3 = {[1]1, [2]2, [3]3, [4]3,AOct, {013}5, {013}6, {013}7, [5]3, L}.

The family AOct can be viewed as the collection of red faces of an octahedron
whose faces are colored red and blue in such a way that no two adjacent faces
share the same color; we call it the alternating octahedron.
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It is not hard to see that B1 and B2 are as listed. Furthermore, using the
equivalent condition in Theorem 3.18, it is routine to verify that the families in
the lists above are minimal. This subsection is devoted to the proof of Theorem
3.28. We proceed by stages: In Theorem 3.30 we show that ψ(3) = 10, in
Proposition 3.40 we show that the only large members of B3 are [5]3 and L, and
in Proposition 3.43 we show that no member of B3 can have size 8 or 9. Along
the way, we also show in Proposition 3.41 that ξ(1, 3) = 7; this is an immediate
consequence of Theorem 3.28, but providing a direct argument at that point
is shorter. We then analyze the remaining possible sizes of members of B3 to
conclude the proof.

Remark 3.29. Notice that every minimal family in B1, B2, and B3 is low. In
fact, every minimal family we mention in this paper is also low, suggesting that
this might be a general phenomenon.

Theorem 3.30. ψ(3) = 10.

Although our argument is specific to the case n = 3, we try to illustrate some
of the complexities that are present in the analysis of a general large family A
of n-element sets.

Proof. Assume A ⊆ [X]≤3 is minimal and |A| ≥ 10. Since ψ(2) = 3, it then
follows that A ⊆ [X]3 and also that neither S1 nor S2 is intersecting. Thus, by
Lemma 3.14 we know d2 ≤ 3 and d1 ≤ 3d2.

Claim 3.31. d1 ≥ 4. Hence, d2 ≥ 2.

Proof. This follows from the pigeonhole principle and only requires that |A| ≥ 8:
Given any A ∈ A, at least one of its elements belongs to at least three other
members of A.

Lemma 3.32. A is regular.

Proof. Recall that m1 = |A ∩ S1| for any A ∈ A. By minimality, A is regular
if and only if m1 = 3. Towards a contradiction, assume A is not regular, so
m1 = 2 by Lemma 3.10. Define d′2 as

d′2 := max{degA({x, y}) : {x, y} ∈ [S1]2}.

By minimality of A, for each A ∈ A, A ∩ S1 is contained in d′2 elements of
A. Define a graph on S1 by: x1Gx2 iff degA({x1, x2}) = d′2. Clearly, d′2 ≤ d1.

Claim 3.33. d′2 = 1.

Proof. Assume otherwise. Suppose a, b, c, d are distinct points in S1 and ab, cd ∈
G. Then there are x, y /∈ S1 such that abx, aby ∈ A, since d′2 > 1. If {c, d} ⊂
A ∈ A, then A meets at most one of these two sets, contradicting that A is
intersecting.

It follows that G ⊆ [S1]2 is intersecting. Since ψ(2) = 3, from G we can
further define an intersecting family of size at most 3 of 2-element sets (or a
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singleton). Since this family is definable from A (because G is), this contradicts
that A is minimal.

Our next goal is to show that (S1, G) is complete.

Claim 3.34. In (S1, G), given any 3 points, there is at most one edge missing.
In particular, G is connected of diameter at most 2.

Proof. Let x, y, z be distinct points in S1 and suppose x is G-connected to
neither y nor z.

Case 1. Suppose first that yGz, i.e., there is A ∈ A with {y, z} ⊂ A, and let
w be the third member of A. Let B be any of the d1 sets in A with x ∈ B and
notice that {w} = B ∩A. It follows that degA(w) ≥ d1 + 1, a contradiction.

Case 2. Otherwise. Now let A ∈ A be any set containing y, so A contains
neither x nor z and any set in A containing either of them meets A in a point
other than y. By the pigeonhole principle at least one element of A must have
degree at least (2d1 + 1)/2 > d1, again a contradiction.

Claim 3.35. (S1, G) is complete.

Proof. Suppose otherwise, and let yz be a missing edge. For any x ∈ S1 \{y, z},
both xy and xz are in G. Since degA(y) = d1, there are precisely d1 such
possible vertices x and |S1| = d1 + 2. Let A ∈ A with {x, y} ⊂ A and let a be
the third element of A, so a /∈ S1. Then for any of the d1− 1 remaining vertices
w of S1, if {w, z} ⊂ B ∈ A then a is also the third element of B. If follows that
degA(a) ≥ d1 so a ∈ S1, a contradiction.

We are almost done now: (S1, G) is complete and |S1| = d1+1. Let x, y ∈ S1

and let a /∈ S1 be such that {a, x, y} ∈ A. Then a also belongs to any set in A
containing 2 of the remaining d1 − 1 elements of S1. Hence,

degA(a) ≥
(
d1 − 1

2

)
+ 1 ≥ d1

since d2
1 − 5d1 + 4 = (d1 − 4)(d1 − 1) ≥ 0 as d1 ≥ 4, a contradiction.

Remark 3.36. For future reference, we explain how to weaken the assumption
that |A| ≥ 10 in the proof of Lemma 3.32 to |A| ≥ 8. The only place where
the assumption was used was to conclude that m1 ≥ 2 via Lemma 3.10. So,
assume that |A| = 8 or 9 and that m1 = 1, thus any A ∈ A contains exactly
one element of degree d1. Clearly, |S1| > 1, by minimality of A. Arguing as in
the proof of Lemma 3.10, if |S1| = k + 1 and x ∈ S1, then there are kd1 sets in
A not containing x. Let A ∈ A extend {x}. Those kd1 sets meet A \ {x} so one
of its two points, say a, satisfies degA(a) ≥ kd1/2. Thus kd1/2 < d1 or k < 2,
so k = 1 and |S1| = 2 so, since d1|S1| = |A|, we have that |A| = 8 and d1 = 4.

Let S1 = {z, w} and let {x, y, z} extend {w}, so x or y meets at least two of
the four sets extending {z}, and it follows that d1,2 ≥ 3. Since d1,2 < d1,1 = d1,
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then d1,2 = 3. Since 3|S1,2|/m2 = |A| = 8 by Fact 3.11, we must have m2 ≥ 3.
But m2 ≤ 2, a contradiction.

Lemma 3.32 means that X = S1, i.e., every point has degree d1. By a
standard double counting argument, we have 3|A| = d1|X|. We use this fact
in conjunction with a more refined version of an earlier counting argument to
bound the size of X.

Claim 3.37. |X| < 8.

Proof. By the principle of inclusion/exclusion, we have

|A| =
∑

D∈[A]1

degA(D)−
∑

D∈[A]2

degA(D) +
∑

D∈[A]3

degA(D)

for any A ∈ A. Since A is a regular family of triples, we have

|A| ≤ 3d1 − (d2 + 2) + 1.

Now, since 3d2 ≥ d1 and 3|A| = d1|X|, we conclude

(|X| − 8)d1 ≤ −3,

which implies that |X| < 8.

Using a similar technique, we can show that A is not regular on pairs when-
ever |X| > 6. Define m′2 as

m′2 = |{D ∈ [A]2 : degA(D) = d2}|,

for any A ∈ A (minimality of A ensures that m2 is independent of the choice of
A).

Claim 3.38. Suppose that |X| > 6. Then m′2 < 3.

Proof. Suppose, towards a contradiction, that m′2 = 3. Again using

|A| =
∑

D∈[A]1

degA(D)−
∑

D∈[A]2

degA(D) +
∑

D∈[A]3

degA(D),

we see
|A| = 3d1 − 3d2 + 1.

As before, since 3d2 ≥ d1 and 3|A| = d1|X|, we may manipulate this to yield

(|X| − 6)d1 ≤ 1,

which contradicts Claim 3.31 whenever |X| > 6.

We are now in a position to slightly improve our bound on the size of X.

Claim 3.39. |X| 6= 7.
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Proof. Suppose towards a contradiction that |X| = 7. Since 3|A| = d1|X|, we
must have that |A| is a multiple of 7. By Proposition 2.5, we have |A| ≤ 25, so
|A| ∈ {14, 21}.

Suppose first that |A| = 21. Since
(
7
2

)
= 21 and each element of A contains

three pairs, the average degree of a pair is 3. Since d2 ≤ 3, this implies that
every pair has degree 3, contradicting Claim 3.38.

We then have that |A| = 14. Mimicking the counting done above, we see
that the average degree of a pair is 2. To avoid reaching a contradiction with
Claim 3.38, we must then have d2 = 3. Let us now attempt to count the number
of pairs of degree 3. Since each A ∈ A contains m′2 pairs of degree 3, m′2|A|
counts each such pair three times. Thus, there must be 28/3 pairs of degree 3,
which is absurd.

Thus, we have |X| ≤ 6. If |X| ≤ 5, then certainly |A| ≤
(
5
3

)
= 10, so we

may assume |X| = 6. Then for any A ∈ [X]3, at most one of A,X \ A is in A,
so |A| ≤

(
6
3

)
/2 = 10.

We organized the argument above in a way that allows us to characterize
the large A ⊆ [X]≤3.

Proposition 3.40. Let A ⊆ [X]≤3 be large. Then either A is the family of
triples from a 5-element set, or A is isomorphic to the family L of Example 3.5.

Proof. Using notation as above, we see from the argument of Theorem 3.30 that
if A is a large family of 3-element subsets of X, then |X| ≤ 6 and if |X| < 6,
then |X| = 5 and A = [X]3.

Assume now that |X| = 6. Then A is low, by Lemma 3.7. Recall that an
intersecting family B ⊆ P(Y ) is called maximal iff for any C, if B ⊆ C ⊆ P(Y ),
either C is no longer intersecting, or else C = B. Following Meyerowitz [5], we
say that an element B of B is minimal iff there is no A ⊂ Y such that A ( B
and A ∈ B. It is trivial that any intersecting family is contained in a maximal
one and that, if Y is finite, any maximal family has size 2|Y |−1. In particular,
the collection of supersets of sets in A is maximal and the members of A are
the minimal elements of this maximal family.

In Meyerowitz [5, Proposition 3.1], a list of all 30 maximal intersecting fami-
lies (up to isomorphism) of a set of size 6 is presented; the families are generated
by stages starting from the family of supersets of a singleton {a} by means of
shifts, and are enumerated according to the number of shifts required to gen-
erate them. The families listed in Meyerowitz [5] as A, B, C, D, E1, E2, F1,
F2, G1–G3, H1–H4, I1–I6, J2–J4 and K1 are not the families of supersets of
the members of a large minimal A (in our sense) with X =

⋃
A, since they all

have at least one minimal element (in the sense of Meyerowitz [5]) of size other
than 3. The families J1, K2 and K3 are not as required either, since from each
of them an element of X is definable. The triple {a, b, c} is definable in K4.
The only remaining example is L, which means that A must be isomorphic to
the family of Example 3.5, which is itself isomorphic to L (and provides a new
explanation as to why all the families from Example 3.6 are isomorphic to the
one from Example 3.5 as well).
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In §2 we stated that ξ(1, 3) = 7. Theorem 3.30 provides us with an easy way
to show this.

Proposition 3.41. ξ(1, 3) = 7.

Proof. ξ(1, 3) ≥ 7 by Theorem 2.10.2. Assume towards a contradiction that
A ⊆ [X]3 is intersecting and such that any non-empty subset of X definable
from A has size at least 8. By passing to a smaller definable intersecting family
if necessary, we may assume that A is minimal, so |A| ≤ 10. We use notation
as in Fact 3.11 and Theorem 3.30.

Claim 3.42. A is regular.

Proof. Assume otherwise.

Case 1. There are three distinct degrees of elements of X. Then

3|A| = d1,1|S1,1|+ d1,2|S1,2|+ d1,3|S1,3| ≥ 8(d1,1 + d1,2 + d1,3)
≥ 8(3 + 2 + 1) > 3× 10 ≥ 3|A|,

a contradiction.

Case 2. There are two distinct degrees. Then

3|A| = d1,1|S1,1|+ d1,2|S1,2| ≥ 8(2 + 1),

so |A| ≥ 8, so d1,1 ≥ 4 by Claim 3.31, so

3|A| ≥ 8(4 + 1) > 3× 10,

again a contradiction.

Then
8d1 ≤ |S1|d1 = 3|A| ≤ 30,

so d1 ≤ 3. On the other hand, by Proposition 2.6,

8 ≤ |S1| ≤ 9− 6
d1
,

or 6 ≤ d1, a contradiction.

Proposition 3.43. There is no minimal A ⊆ [X]3 with |A| = 8 or 9.

Proof. Suppose towards a contradiction that we have a minimal A ⊆ [X]3 with
|A| = 8 or 9. Examining the proof of Theorem 3.30, we only used that |A| ≥ 8
to conclude that d1 ≥ 4, A is regular, and |X| ≤ 6. Thus |X| = 5 or 6. A
cursory examination of the equation

3|A| = d1|X|
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reveals that the only solution fitting the above constraints is |A| = 8, |X| = 6,
and d1 = 4. Using, once again, the inclusion/exclusion counting as above, we
have for any A ∈ A,

|A| = 3× 4−
∑

D∈[A]2

degA(D) + 1,

which implies that
∑
D∈[A]2 degA(D) = 5. In particular, every A ∈ A contains

a pair D with degA(D) = 1; there must therefore be at least 8 such pairs. Thus,
at most

(
6
2

)
− 8 = 7 pairs have degree greater than 1. Then

24 = 3|A|
=

∑
D∈[X]2

degA(D)

≤ 8 + 7d2,

so d2 = 3. Since
∑
D∈[A]2 degA(D) = 5, this means every A ∈ A contains one

pair of degree 3 and two of degree 1. Thus, there must be a total of 16 pairs of
degree 1, a contradiction.

Remark 3.44. Let X be the set of vertices of an octahedronH and letA ⊆ [X]3

consist of the sets of vertices of the faces of H. Then |X| = 6, |A| = 8, d1 = 4,
and A is low. The family A is not intersecting, although it is 3-cc. This example
may help explain why some care was required in the proof of Proposition 3.43.

We now conclude the proof of Theorem 3.28:

Proof. Suppose that A ⊆ [X]≤3 is minimal, and for convenience suppose that
X =

⋃
A. Obviously, if |A| = 1 then A ∈ {[1]1, [2]2, [3]3} and those families

are certainly minimal. We thus assume that |A| > 1. In this case A ⊆ [X]3:
if A contains a set of size 2 or smaller, then we may define from A one of the
elements of B2 above, and since [3]3 is definable from [3]2 we can in fact define
from A a family of cardinality 1.

In turn, if the set Y = {x ∈ X : degA(x) = 1} is non-empty, then the family
A′ = {A ∩ (X\Y ) : A ∈ A} is intersecting, definable from A, and contains sets
of cardinality less than 3. Thus, as above, a family of size 1 is then definable
from A′, and hence from A. Consequently, we may assume that every point has
degree at least 2. Then we have

3|A| =
∑
x∈X

degA(x) ≥ 2|X|,

giving the crude bound |X| ≤ 3
2 |A|.

We now consider several cases based upon the value of |A|, recalling that we
have already handled |A| ≥ 8 and |A| = 1.

|A| = 2: By the above bound, we have |X| ≤ 3, which prevents this case
from being realized.
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|A| = 3: We have |X| ≤ 4. If |X| < 4, or if a proper subset of X were
definable from A, then there would be A′ ⊆ [X]≤3 definable from A with |A′| =
1, contradicting minimality. Thus, |X| = 4 and A is regular, so we have 3|A| =
d1|X|, which has no solutions when |A| = 3 and |X| = 4.

|A| = 4: We have |X| ≤ 6. If |X| < 4 or if a proper subset of |X| were
definable from A, then there would be A′ ⊆ [X]≤3 definable from A with |A′| =
1, contradicting minimality. Thus |X| ≥ 4 and A is regular, so we have 12 =
d1|X|. This has two solutions: |X| = 4, d1 = 3, which corresponds to [4]3, and
|X| = 6, d1 = 2, which corresponds to AOct.

To see this, note first that if |X| = 4, then it is clear that A must be
isomorphic to [4]3, so we focus our attention on the case that |X| = 6. As
in the proof of Theorem 3.30, we count |A| by inclusion/exclusion. That is,
|A| = 4 = 3×2−

∑
D∈[A]2 degA(D)+1, so

∑
D∈[A]2 degA(D) = 3. Thus d2 = 1,

so any pair of elements of X is contained in at most one element of A. Without
loss of generality, suppose that 012 ∈ A. Some other element of A contains 0
but not 1 or 2, without loss let us assume it is 045. Similarly, an element of A
contains 1 but not 0 or 2. It must also intersect 045, so, reversing the labels of
4 and 5 if necessary, it is 135. Since d1 = 3, the last element of A must be 234,
so A = {012, 045, 135, 234} = AOct.

|A| = 5: We have |X| ≤ 7. If |X| < 4 or if a proper subset of |X| were
definable from A, then there would be A′ ⊆ [X]≤3 definable from A with |A′| =
1, contradicting minimality. Thus |X| ≥ 4 and A is regular, so we have 15 =
d1|X|. This has a unique solution: |X| = 5, d1 = 3.

We count |A| by inclusion/exclusion, so 5 = 3 × 3 −
∑
D∈[A]2 degA(D) + 1,

or
∑
D∈[A]2 degA(D) = 5. It cannot be the case that each element of A contains

two pairs of degree 1, since all 10 pairs in [X]2 would have degree 1, contradicting
the fact that A counts 15 pairs (including multiplicity). Thus, it must be the
case that each element of A contains one pair of degree 1 and two pairs of degree
2. This means that five of the pairs in [X]2 have degree 1 and five have degree
2. Suppose that 013 is in A, with 01 having degree 1 and 13, 03 having degree
2. Some other element of A must contain 03; call it 023. Similarly, some other
element contains 13, so it is either 134 or 123. If it were 123, then no triple can
contain 4 and two of 0,1,2,3. Thus, 134 ∈ A. Then the only triples that can
contain the pair 24 are 024 and 124; without loss of generality assume it is 024.
After that, 1, 2, and 4 are left with degree less than 3, so the last element must
contain all of them. Therefore, A = {013, 124, 023, 134, 024} = {013}5.

|A| = 6: We have |X| ≤ 9. If |X| < 4 or if a proper subset of |X| were
definable from A, then there would be A′ ⊆ [X]≤3 definable from A with |A′| =
1, contradicting minimality. Thus |X| ≥ 4 and A is regular, so we have 18 =
d1|X|. This has two solutions: |X| = 9, d1 = 2 and |X| = 6, d1 = 3. If |X| = 9,
then counting |A| by inclusion/exclusion yields 6 = 2×3−

∑
D∈[A]2 degA(D)+1,

so
∑
D∈[A]2 degA(D) = 1, which is absurd.

So, |X| = 6. Again counting |A| we have 6 = 3× 3−
∑
D∈[A]2 degA(D) + 1,

so we have
∑
D∈[A]2 degA(D) = 4. This means each A ∈ A contains two pairs
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of degree 1 and one pair of degree 2. Then a total of twelve pairs in [X]2 have
degree 1, so the other three must have degree 2. The three pairs of degree 2
must be disjoint, since their points of intersection would form a definable set
of size at most 3. Without loss of generality, let us label the pairs of degree
two 03, 14, 25, and assume that 013 is one of the elements of A containing 03.
The pair 04 must be contained in some element of A; since it must contain a
pair of degree 2 it must be either 034 or 014. However, if it were 014, the pair
01 would have degree greater than 1, so we must have 034 ∈ A. No element
of A containing 14 can contain 0 or 3 since we have already used the pairs 01,
04, 13, 34, so we must have 124 and 145 ∈ A. Continuing in this fashion gives
A = {013, 124, 235, 034, 145, 025} = {013}6.

|A| = 7: We have |X| ≤ 10. If a set of size smaller than 5 were definable from
A, then an intersecting family of size at most 4 would be definable, contradicting
minimality. Thus, if A is not regular it could have at most two distinct degrees,
say d1,1 and d1,2, each witnessed by five points of X. But if this were the case,
then we would have

21 = 3|A| =
∑
x∈X

degA(x) = 5d1,1 + 5d1,2,

which has no solutions. Thus, A is regular, so we have 21 = d1|X|, which implies
that |X| = 7 and d1 = 3.

Counting |A| by inclusion/exclusion, we see 7 = 3×3−
∑
D∈[A]2 degA(D)+1,

so
∑
D∈[A]2 degA(D) = 3. This means each A ∈ A contains three pairs of degree

one. Since a total of 3|A| = 21 pairs are contained in elements of A, we conclude
that every pair in [X]3 is contained in exactly one element of A. Without loss of
generality, suppose that 013, 026, and 045 are the three elements of A containing
the point zero. Some element of A contains the pair 12; ruling out the edges
already used, the only possibilities are 124 and 125. Switching the labels of 4
and 5 if necessary, we may assume 124 is in A. Now, some triple must contain
23, and the only possibility is 235. Proceeding in this fashion, the only triple
which can contain 46 is 346, and the only triple which can contain 16 is 156.
Thus, A = {013, 124, 235, 346, 045, 156, 026} = {013}7.

4 Low intersecting families

In the previous section we started from an intersecting family A ⊆ [X]≤n and
investigated bounds on the sizes of intersecting families A′ ⊆ [X]≤n definable
from A. Here we restrict our attention to those A′ that are themselves subsets
of A.

Definition 4.1. An intersecting family A is quasi-low (qlow) iff Aut(A) acts
transitively on A.

It would seem reasonable to study qlow families A ⊆ [X]n, since no proper
subfamily of such an A is definable. However, if one is interested in bounding
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the size of A, this is not the right notion to investigate, since no such bound
exists:

Example 4.2. Given a set X, natural numbers m < n, and B0 ∈ [X]m, the
family A = {A ∈ [X]n :B0 ⊆ A} is qlow.

Example 4.3. In Example 2.1, assume |A| = N . Then A is qlow of size 3N .

Hence, we restrict our attention to low families.

Definition 4.4. Let ρ(n) = max{|A| :A ⊆ [X]n is low and intersecting}.

From the previous section,
(
2n−1
n

)
≤ ρ(n), so ρ(3) ≥ 10. Similarly, ρ(n) >

(n/2)n/2 for all n > 6. Notice that ρ is well-defined:

Lemma 4.5. Let A ⊆ [X]n be low. If n = 2, then |A| ≤ 3. If n ≥ 3, then
|A| <

(
n2−2
n−1

)
.

Proof. Let A ⊆ [X]n. If |X| < 2n, clearly |A| ≤
(|X|
n

)
≤
(
2n−1
n

)
≤ ρ(n). By

Theorem 2.7, |X| ≤ n2 − 1. It follows that ρ(2) = 3.
If |X| ≥ 2n and A is intersecting, by the Erdős-Ko-Rado theorem, see Erdős-

Ko-Rado [3], we have that |A| ≤
(|X|−1
n−1

)
, so

ρ(n) ≤
(
n2 − 2
n− 1

)
.

In fact, if n ≥ 3 the inequality is strict since n2 − 1 > 2n and equality in the
Erdős-Ko-Rado theorem requires that the family A consists of all n-element
subsets of a set X of size n2−1 that contain a fixed element of X. This element
is therefore definable from A, so A is not low.

Theorem 4.6. ρ(3) = 10.

Proof. Observe first that to adapt the argument of Theorem 3.30, it suffices to
check that a low A ⊆ [X]3 with |A| ≥ 10 satisfies alternative (2) of Lemma
3.14 for m ∈ {1, 2}. Aside from these bounds on the degrees, the only use of
minimality in the proof of Theorem 3.30 is to ensure that no proper subset of
A is definable from A; this holds whenever A is low.

As usual, we may assume A is finite. Suppose, towards a contradiction, that
either S1 or S2 is intersecting. Then, by Theorem 2.7, we may define from A a
subset Y ⊆ X with |Y | ≤ 3. Since A is low, we have |X| ≤ 3, which contradicts
|A| ≥ 10.

We now introduce an operation ∗ that allows us to “lift” small families to
larger ones.

Definition 4.7. Let A ∗ B = {
⋃
x∈A{x} ×Bx :Bx ∈ B, A ∈ A}.

Lemma 4.8. Suppose A ⊆ [X]m and B ⊆ [Y ]n are qlow, and let C = A ∗ B.
Then C ⊆ [X × Y ]m×n is qlow and |C| = |A||B|m. If A and B are low, then so
is C.
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Proof. Notice that C is intersecting and has the claimed size. Let C1, C2 ∈ C.
For C ∈ C let AC := proj1(C) be its first coordinate projection, so AC =
{x : ∃y (x, y) ∈ C}. There is no loss of generality in assuming that for all
x ∈ AC1 , BC1,x = B is a fixed element of B, as some automorphism of B sends
BC1,x to B and this induces an automorphism of C that sends C1 to AC1 ×B.

Similarly, there is an automorphism of C sending C2 to AC2 ×B, and there
is an automorphism of A that sends AC1 to AC2 . This automorphism lifts to
an automorphism of C, and appropriately composing these automorphisms we
find one that sends C1 to C2, so C is qlow.

An easy extension of this argument shows that C is in fact low if A and B
are low.

Definition 4.9. The powers of A are given by A(1) = A and A(k+1) = A(k) ∗A.

Fix n and a low A ⊆ [X]n such that |A| > cn, say |A| ≥ cn1 where c1 > c.
Then

|A(k)| = |A|
nk−1
n−1 ,

as a straightforward induction establishes, since |A(k+1)| = |A(k)||A|nk

.

If k > 1, then |A(k)| ≥ (cn1 )
nk−1
n−1 > cn

k

1 and A(k) ⊆ [X]n
k

. This gives us an
infinite sequence of low families that “grow faster” than cn, obtained by means
of our lifting operation.

Remark 4.10. Notice that ∗ is not commutative, but it is associative (up to
isomorphism), so A(k+1) ∼= A ∗ A(k).

Example 4.11. A “Sierpinski-like” sequence of low families can be obtained
by starting with n = n1 = 2 and A the collection of 2-element subsets of a
set of size 3; our construction then produces for infinitely many values of n
(namely, the powers of 2) a low A of n-element subsets, with |A| = 3n−1. In
general, we can produce this way, for each k, low families (An :n ∈ N) with

|An| =

(
k−1

√(
2k − 1
k

))kn−1

and An ⊂ [X]k
n

.

Remark 4.12. In general, the operation ∗ does not preserve minimality. To see
this, let A be minimal, let |Y | = 3 and consider B = A∗ [Y ]2 where each point of
X =

⋃
A is replaced by a “block” of 3 points. By considering invariance under

Aut(B), it follows that the family C consisting of those A ∈ B that contain one
of these blocks of size 3 and exactly one point from each other block, is definable
from B, by Lemma A.12, so B is not minimal. It is worth noting that an analysis
of this example led to the lower bounds in Theorem 3.20.

Question 4.13. Is Aut(A ∗ B) ∼= Aut(A) ∗Aut(B)n, where n is the size of the
sets in A?

Recall that A is called k-wise t-intersecting iff the intersection of any k
members of A has size at least t, so A is intersecting iff it is 2-wise 1-intersecting.
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It seems worthwhile to explore how the bounds obtained throughout this paper
are affected if one now assumes that the family A is k-wise t-intersecting rather
than (k + 1)-cc or simply intersecting.

A Definability

Here we state precisely the notion of definability that we have in mind. We
work in the language {∈, A} of set theory with one unary predicate symbol. We
associate to each set X and family A ⊆ P(X) the structure

ÂX := (P(X) tX,A, ∈̂),

where t denotes disjoint union, and

α ∈̂β iff α ∈ X,β ∈ P(X), and α ∈ β.

We interpret Ax as x ∈ A (in particular, Ax implies that x ∈ P(X)).
The sole purpose of taking disjoint unions and using ∈̂ rather than ∈ is to

stop the internal set structure of X from introducing unexpected definability;
for example, if X = {∅, {∅}} and A = ∅, we could define both elements of X if
in ÂX we were to use ∈ rather than ∈̂, or if we were to take the usual union of X
and P(X), while it is our intention that X should be thought of as a 2-element
set with no distinguishing features between its elements. We will gloss over this
technicality in what follows.

As usual, a set Y is (first-order) definable from A iff there is a first-order
formula φ(z) (where any variable occurring in φ other than z is bound) with

Y = {Z : ÂX |= φ(Z)}.

Notice we are not allowing parameters here, since all of our structures are finite
and, of course, any finite set is definable with parameters.

Different alternatives to this notion of definability are possible and perhaps
some are even more natural. For example, one could argue that rather than
first-order definability, the natural notion of definability to consider is that of
being definable in set theory. For finite families, our simpler setting suffices, as
being definable has a natural combinatorial characterization, see Lemma A.12.

Our definitions tend to focus on parameters involving the size of certain
sets. In set theory one can define these parameters directly, while in general
they are not first-order over ÂX . However, for any fixed n ∈ N, we can state
that a (definable) set has precisely n elements. Since the sizes we consider are
finite, we can then overcome the obstacle by a detour: Rather than requiring,
for example, that a point x has maximal degree in a graph (this notion not being
first-order definable), we can instead require that for a given fixed number k,
the point x has degree k. If k happens to be the maximal degree in a specific
instance, then this gives (indirectly) the required definition in that instance.

Let SX denote the symmetric group of all permutations of X. Note that
the natural action of SX on X induces an action of SX on P(X) given by
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σ ·A = σ[A] := {σ(a) : a ∈ A}, as well as an action of SX on P(P(X)) given by
σ · A = σ[A] = {σ ·A :A ∈ A}.

Definition A.1. Given A ⊆ P(X), by Aut(A) we mean {σ ∈ SX :σ · A = A}.

This notation is standard, see for example Meyerowitz [5].

Remark A.2. Using the action mentioned above, we can identify the group
of (model theoretic) automorphisms Aut(ÂX) with Aut(A). Throughout the
paper, we use the (slightly imprecise) notation Aut(A) since X is always clear
from context.

Definition A.3. Given a set X and A ⊆ P(X), let Y ⊆ X ∪ P(X) and
σ ∈ Aut(A). We say that Y is invariant under σ iff Y = σ · Y and we say that
Y is invariant iff it is invariant under all members of Aut(A).

Proposition A.4. Given a set X and A ⊆ P(X), let Y ⊆ X ∪ P(X). If Y is
definable from A then Y is invariant.

It is thus natural to introduce the following notion:

Definition A.5. Let A ⊆ P(X). A set Y ⊆ X ∪P(X) is hopelessly undefinable
from A iff there exists σ ∈ Aut(A) such that Y 6= σ · Y .

Remark A.6. If X is finite, the collection {Y ⊆ X :Y is invariant} is definable
from A. To see this, let n = |X ∪ P(X)| and notice that if Y ⊆ X then Y is
invariant iff ÂX |= φ(Y ), where φ(y) is

∀x1 . . . ∀xn ∀y1 . . . ∀yn ((
∧
i<j xi 6= xj ∧

∧
i<j yi 6= yj ∧

∧
i(Axi ⇔ Ayi)

∧
∧
i,j(xi ∈ xj ⇔ yi ∈ yj))⇒

∧
i(xi ∈ y ⇔ yi ∈ y)).

That is, the formula φ(Y ) states that Y is closed (thus invariant) under any
permutation of X ∪ P(X) in Aut(ÂX) = Aut(A).

Definition A.7. A set A ⊆ P(X) is low iff every non-empty, proper subset of
X is hopelessly undefinable from A, as is every non-empty, proper subset of A
or, equivalently, iff the group Aut(A) acts transitively on both X and A.

In Meyerowitz [5], A is called transitive iff Aut(A) acts transitively on X.
This is a weaker notion than being low.

Example A.8. The following families A are transitive but not low:

1. A = P(X) for any non-empty X.

2. Let X be the set of vertices of a hexagon, labeled clockwise as 1–6, and
let A consist of the rotations of the triangles {1, 2, 4} and {1, 3, 5}.

We are mainly interested in the case where the family A is intersecting. The
following are typical examples of low intersecting families.
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Example A.9. Let X be the ordered set of size ℵ1 defined by considering a set
A of order type ω1, and replacing each element of A with a copy of Q. Let A be
the collection of countable non-empty subsets of X closed under predecessors
and whose supremum does not exist. Since all countable dense linear orders
without endpoints are order isomorphic, it follows that A is low.

Example A.10. Let X be an infinite set. Let U be a uniform ultrafilter on
X, and let A be the collection of sets in U whose complement also has size |X|.
Then A is low. (For the easy proof, see Caicedo-Clemens-Conley-Miller [1].)

Example A.11. Let X be a set of size 10 and let A be the collection of all
subsets of X of size 6. Then A is low.

Additional examples can be found throughout the paper; in particular, see
Theorem 2.10.

It turns out that for finite structures, a set is definable iff it is invariant
under automorphisms:

Lemma A.12. Assume X is finite and let B ⊆ P(X)∪X. Then B is definable
from A iff it is invariant under Aut(A).

Proof. This is an easy consequence of either Beth’s definability theorem or
Svenonius’s theorem, see Hodges [4, §10.5]. Briefly: Let ~a = 〈a1, . . . , an〉 enu-
merate X t P(X), where n = |X|+ 2|X|, and let φ~aA(~x) be the formula∧
i<j

xi 6= xj ∧ ∀y
∨
i

y = xi ∧
∧
ai∈̂aj

xi ∈ xj ∧
∧
ai 6∈̂aj

xi /∈ xj ∧
∧
ai∈A

Axi ∧
∧
ai /∈A

¬Axi,

where i, j ∈ {1, . . . , n} in all connectives. Suppose B̂Y |= ∃~y φ~aA(~y), as witnessed
by ~b. Then the map bi 7→ ai is an isomorphism between B̂Y and ÂX .

Assume now that Y ⊆ P(X)∪X is invariant under Aut(A) and let ϕ(z) be
the formula ∃~x ψ(~x, z), where ψ(~x, z) is the formula

φ~aA(~x) ∧
∧
ai /∈Y

z 6= xi ∧
∨
ai∈Y

z = xi.

Then Y is definable from A via ϕ: The tuple ~a witnesses that Y ⊆ {a :ϕ(a)},
and the invariance of Y under automorphisms guarantees that for any tuple ~b,
{a :ψ(~b, a)} is either empty (if φ~aA(~b) fails) or Y .

Corollary A.13. If X is finite and B ⊆ P(X) ∪ X, then B is not definable
from A iff B is hopelessly undefinable from A.
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