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Real-valued Measurable Cardinals
and Well-orderings of the Reals

Andrés Eduardo Caicedo

Abstract. We show that the existence of atomlessly measurable cardinals is
incompatible with the existence of well-orderings of the reals in L(R), but con-
sistent with the existence of well-orderings of the reals that are third-order
definable in the language of arithmetic. Specifically, we provide a general argu-
ment that, starting from a measurable cardinal, produces a forcing extension
where c is real-valued measurable and there is a ∆2

2-well-ordering of R. A
variation of this idea, due to Woodin, gives Σ2

1-well-orderings when applied to
L[µ] or, more generally, Σ2

1(Hom∞) if applied to nice inner models, provided
enough large cardinals exist in V . We announce a recent result of Woodin
indicating how to transform this variation into a proof from large cardinals of
the Ω-consistency of real-valued measurability of c together with the existence
of Σ2

1-definable well-orderings of R. It follows that if the Ω-conjecture is true,
and large cardinals are granted, then this statement can always be forced.

However, we introduce a strengthening of real-valued measurability
(real-valued hugeness), show its consistency, and prove that it contradicts
the existence of third-order definable well-orderings of R.

This work deals with consistency results within the theory of real-valued measur-
able cardinals and draws from Chapter 3 of the author’s dissertation [11], written
at the University of California, Berkeley, under the supervision of John R. Steel
and W. Hugh Woodin. The author wishes to thank both of them for their guid-
ance and patience. He also wishes to thank the referee for comments that helped
to improve the presentation significantly.

1. Basics of random forcing

This section is included in order to make this paper reasonably self-contained, and
we do not claim much originality here other than by way of exposition. The main
references for the theory of real-valued measurable cardinals are [38] and [19], see
also [32] and [22]. For whatever modest contributions in this section are due to
us, see after Fact 1.27. Our notation is mostly standard, see [24], [31], and [26] for



84 A. E. Caicedo

whatever notions we leave undefined. ZFC− denotes ZFC without the Power-Set
axiom. We start by defining our basic objects:

Definition 1.1. A cardinal κ is real-valued measurable, RVM(κ), iff it is uncountable
and there is a κ-additive probability measure ν : P(κ) → [0, 1] that is null on
singletons. We call ν a witnessing probability.

A real-valued measurable cardinal κ is atomlessly measurable iff there is an
atomless witnessing probability ν.

That ν is κ-additive means that whenever γ < κ and 〈Aα :α < γ 〉 is a
sequence of disjoint subsets of κ, then

ν

( ⋃
α<γ

Aα

)
=
∑
α<γ

ν(Aα) := sup

{∑
α∈F

ν(Aα) :F ⊂ γ is finite

}
.

Of course, this implies in particular that only countably many of the Aα have
positive measure: Otherwise, for some n,

Bn =
{

α < γ : ν(Aα) >
1

n + 1

}
would be infinite, contradicting that ν is bounded above by 1. See also Claim 1.30.

That ν is atomless means that whenever 0 < ν(A), there is B ⊂ A with
0 < ν(B) < ν(A). We leave it as an easy exercise for the reader to see that in
this case, for any ε with 0 < ε < ν(A), there is B ⊂ A with ν(B) = ε (or see [26,
Lemma 2.6] for a hint on how to proceed).

The following is due to Ulam [43], who also introduced the concept:

Theorem 1.2. If RVM(κ), then κ is either measurable or atomlessly measurable,
in which case κ ≤ c. �
Definition 1.3. Let ν be a complete measure on some set X . Then

Nν := { Y ⊆ X : ν(Y ) = 0 }
is the ideal of ν-null sets.

Since add(Nν) is necessarily a regular cardinal, we have the following useful
fact:

Fact 1.4. Suppose RVM(κ) and ν is a witnessing probability. Then:
1. κ = add(Nν) is regular.
2. Nν is an ℵ1-saturated ideal on κ. �

Remark 1.5. In fact, if κ ≤ c is real-valued measurable, then κ is weakly Mahlo,
the κth weakly Mahlo, etc. Recall that κ is weakly Mahlo iff it is uncountable and

{ ρ < κ : ρ is regular}
is stationary in κ. One can see this as a corollary of Theorem 1.6, see Corollary
1.24. That κ is weakly inaccessible follows immediately from Fact 1.4 and the
existence of Ulam matrices on successor cardinals, see [31, Theorem II.6.11].
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The following basic characterization is due to Solovay, and will be essential
for our arguments:

Theorem 1.6. RVM(κ) iff there is λ ≥ ω1 such that

V Randomλ |= ∃j : V
≺−→ N, cp(j) = κ,

where Randomλ is the forcing for adding λ many random reals.
If κ ≤ c and RVM(κ), then in addition we can require that

V Randomλ |= ωN ⊆ N.

As far as the author can see, the statement of Theorem 1.6 has not appeared
explicitly in print. It can certainly be glimpsed in the arguments of [38] (see espe-
cially [38, §6]) and it is well known to experts in the area, see for example [22].

Definition 1.7. Specifically, Randomλ is the collection of Borel subsets of 2λ, modulo
null sets, where the measure ϕ is defined as follows:

• For J ⊂ λ, J finite, and z ∈ 2J , the cylinder determined by J, z is

C = CJ,z := { x ∈ 2λ :x�J = z }.

For such a C, define ϕ(C) := 2−|J|.
• The cylinders generate the product topology on 2λ. Extend ϕ to a Borel

measure by:

ϕ(B) := inf

{∑
n

ϕ(Cn) :B ⊆
⋃
n

Cn, Cn a cylinder

}
for B a Borel subset of 2λ.

Remark 1.8. In fact, we can extend ϕ to a complete measure in the standard way.
Some presentations of random forcing assume that we are working with this com-
pletion and not just with its restriction to Borel sets. For the purposes of forcing,
the resulting Boolean algebras are equivalent, and we can ignore the difference.

Definition 1.9. Let B be a σ-complete Boolean algebra. A ‘probability measure’ on
B is a function ν : B → [0, 1] such that

1. ν(a) = 0 iff a = 0.
2. ν(1) = 1.
3. ν is σ-additive: If { an :n ∈ ω } is an antichain in B, so an · am = 0 whenever

n �= m, then

ν

(∑
n

B
an

)
=
∑

n

ν(an).

We call (B, ν) a measure algebra.

Fact 1.10.

1. For all λ, Randomλ is ccc and, therefore, a complete Boolean algebra.



86 A. E. Caicedo

2. The map ν : Randomλ → [0, 1] given by ν([X ]) = ϕ(X), where ϕ is as
described above and [X ] denotes the equivalence class of the Borel subset
X ⊆ 2λ, is a ‘probability measure’, so (Randomλ, ν) is a measure algebra.

Proof. That Randomλ is ccc follows from Claim 1.30. Since it is σ-complete and
ccc, it is a complete Boolean algebra. A proof of 2 can be found in [18], see Remark
1.11 below. �

Remark 1.11. Given any probability space (X,P, µ), P/Nµ can be turned into a
measure algebra by exactly the same construction as in 2 of Fact 1.10, see [18].
More significantly,

Fact 1.12. Any measure algebra is isomorphic (as measure algebra) to one of the
form P/Nµ for some probability space (X,P, µ), where P/Nµ is a measure algebra
with the ‘probability measure’ described in Fact 1.10.2. �

This is a consequence of the so-called Loomis-Sikorski theorem (due to von
Neumann) stating that any σ-complete Boolean algebra is isomorphic (as a Boolean
algebra) to Σ/I for some σ-algebra Σ of subsets of some set X , and some σ-
complete ideal I on Σ. See [27] and [18] for details.

Definition 1.13.

1. For B a complete Boolean algebra, the generating number of B is τ(B) :=
min{ |X | :X generates B (as a complete algebra) }.

2. B is τ-homogeneous iff1 τ(B) = τ(B�a) for any a �= 0.

Fact 1.14.

1. If B is a complete Boolean algebra which is homogeneous in the forcing sense2,
then B is τ-homogeneous.

2. Let λ be a cardinal. Then Randomλ is homogeneous. Thus, it is τ-homogen-
eous, and τ(Randomλ) = λ. �

Theorem 1.15 (Maharam, see [18, Theorem 3.8]). If B is a complete τ-homoge-
neous measure algebra, then it is isomorphic as a measure algebra to exactly one
Randomλ up to the cardinality of λ. �

Maharam’s theorem is actually much more general than we have stated, but
this particular case is all we need.

Fact 1.16. If B�Randomλ (i.e., B is a complete subalgebra of Randomλ), then there
is a condition p ∈ B (equivalently, there is a dense set of such conditions) such
that B�p ∼= Randomγ for some γ. �

Notice that, conversely, if γ < λ, then Randomγ � Randomλ.

1For p ∈ B \ {0}, B�p is the Boolean algebra of elements of B below p.
2I.e., for any p, q ∈ B \ {0} there are 0 < r ≤ p and 0 < s ≤ q such that B�r and B�s are
isomorphic.
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Remark 1.17. The version of Fact 1.16 for Cohen forcing is true for λ ≤ ω1 (see
[28] or [6]) but false for λ ≥ ω2, see [29].

The following is [32, Theorem 3.13].

Fact 1.18. Let B � Randomλ. Then

1 �B (Randomλ)V /B ∼= ˙Randomγ for some γ. �
The following is [32, Lemma 3.12].

Fact 1.19. If W ⊇ V is an outer model and G (identified as a subset of λ) is
(Randomλ)W -generic over W , then G is (Randomλ)V -generic over V . In particu-
lar, for any P, Randomλ completely embeds into P ∗ Q̇, where Q̇ is a P-name for
(Randomλ)V P

. �
Proof of Solovay’s Theorem 1.6. (⇐) Suppose

V Randomλ |= ∃j : V
≺−→ N, cp(j) = κ.

Let ϕ : Randomλ → [0, 1] be the ‘probability measure’ associated to Randomλ. In
V , we want to define a probability measure on subsets of κ. Fix names j̇ and N
such that

&'&'N is a transitive inner model and j̇ : V
≺−→ N, cp(j̇) = κ()() = 1.

For A ⊆ κ, let ν(A) := ϕ&'&'κ ∈ j̇(A)()(), so ν : P(κ) → [0, 1]. It is easy to verify
that ν is as wanted3.
(⇒) Suppose RVM(κ). Let ν be a witness, and let Bν = P(κ)/Nν . Since Nν is ℵ1-
saturated, Bν is complete (by the Smith-Tarski theorem [26, Proposition 16.5]),
and we may assume (by reducing to a subset if necessary) that Bν

∼= Randomλ

for some λ: Necessarily, for some X ⊆ κ, X /∈ Nν , we must have that P(X)/Nν

is τ -homogeneous because τ is a decreasing ordinal-valued function and therefore
eventually constant. By replacing ν with ν̂ : Y 
→ ν(X∩Y ), we may as well assume
X = κ. That Bν

∼= Randomλ for some λ now follows from Maharam’s Theorem
1.15. If κ ≤ c then |Bν | ≥ c.

Let G be Bν -generic over V . Then G is essentially a V -ultrafilter on κ, and
we can form π : V → Ult(V,G) in V [G]. But the saturation of Nν ensures that
the ultrapower is well founded, and therefore isomorphic to a transitive class N .
Let j : V

≺−→ N denote the corresponding embedding, coming from π via the
Mostowski collapse. Then cp(j) = κ, and since Bν

∼= Randomλ, we are done, except
for the claim that λ ≥ ω1. For this, see [21, §2], where it is shown that in fact
λ ≥ κ+.

See Fact 1.20 and Remark 1.21 for the proof that ωN ⊆ N . �
Fact 1.20. Suppose RVM(κ) and Randomλ, j and N are as in Solovay’s theorem.
Then RN = RV Randomλ .

3Those uncomfortable with our use of proper classes are advised to consult [38] for a first-order
treatment.
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Proof. This is standard from the theory of saturated ideals: In fact, using the
notation from the theorem, if G is Bν-generic over V , then V [G] |= ωN ⊆ N . �
Remark 1.21. A strong version of Fact 1.20 is that we can in fact assume that
κN ⊂ N :

Use notation as above. We claim first that for every term ḃ in Randomλ for
an element of the ground model V , there is a function f ∈ V such that

&'&'[f ]N = j̇(ḃ)()().
In effect, suppose &'&'ḃ ∈ V ()() = 1 and let A = { aξ : ξ is a possible value of ḃ } ∈ V

be a maximal antichain in P(κ)/Nν , so for each aξ ∈ A, aξ � ḃ = ξ. Since Nν is
ω1-saturated, A is countable, so we may assume A is a partition of κ, i.e., aξ ⊆ κ
for each aξ ∈ A and aξ ∩ aζ = ∅ whenever ξ �= ζ. In V , define f : κ → V by

f(η) = the unique ξ such that η ∈ aξ.

Then &'&'[f ]N = j̇(ḃ)()() = 1, since for any ξ, aξ � [f ]N = [cξ]N , so 1 � [f ]N = [cḃ]N =
j̇(ḃ). This easily leads to a proof that, in Randomλ, N is closed under ω-sequences
and, in fact, under sequences of length < κ.

Without loss of generality, the null ideal Nν is normal (see Corollary 1.23),
so the identity represents κ in the ultrapower N . Assuming normality of Nν , we
prove that it is in fact closed under κ-sequences.

Given any term 〈 τα :α < κ 〉 for a κ-sequence in V [G] of elements of N , let
〈 ρα :α < κ 〉 be a term for a κ-sequence of functions in V such that for each α,

&'&'ρα ∈ V ∩ κV and τα = [ρα]N()() = 1

and then a sequence 〈 fα :α < κ 〉 of functions fα : κ → V can be chosen in V so
&'&'[fα]N = j̇(ρα)()() = 1. But &'&'[ρα]N = j̇(ρα)(κ)()() = 1.

Letting g : κ → V be the function in V given by g(β) = 〈 fα(β) :α < β 〉 for
all β < κ then, in V [G],

[g]N = j(g)(κ) = 〈 j(fα)(κ) :α < κ 〉 = 〈 [fα]N :α < κ 〉 .
Hence, κN ⊆ N . In particular, PV [G](κ) ⊆ N .

Remark 1.22. Suppose RVM(c) and ν is a witness such that P(c)/Nν is homoge-
neous. As mentioned above, it follows that P(c)/Nν

∼= Randomλ for some λ ≥ ω1.
It is a result of Gitik and Shelah that in fact λ = 2c, see [22, Theorem 1.1].

Solovay’s characterization allows for easy proofs of several results of the clas-
sical theory of real-valued measurability. For example:

Corollary 1.23 (Solovay [38]). If RVM(κ) then there is a witnessing probability ν
such that Nν (see Definition 1.3) is a normal ideal.

Proof. Suppose RVM(κ). Let λ be such that in V Randomλ there is j : V → N with
cp(j) = κ, and define ν as in the proof of Theorem 1.6. Then Nν is a normal ideal:
Suppose 〈Aα :α < κ 〉 is a sequence of subsets of κ such that &'&'κ ∈ j̇(Aα)()() = 0 for
all α. Then certainly &'&'∃α < κ (κ ∈ j̇(Aα))()() = 0, i.e., &'&'κ ∈ j̇

(
�α<κAα

)
()() = 0. �
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Corollary 1.24 (Solovay [38]). If RVM(κ) then κ is weakly Mahlo, the weakly Mahlo
cardinals are stationary below κ, etc.

Proof. Suppose RVM(κ). Let λ, j̇, ν be as in the proof of Theorem 1.6. If κ is not
weakly Mahlo, then A = {α < κ : cf(α) < α } contains a club in κ and therefore
&'&'κ ∈ j̇(A)()() = 1, i.e., cf(κ) < κ in V Randomλ . But this is impossible, since Randomλ

is ccc. The same argument shows that the non-weakly Mahlo cardinals are in Nν ,
etc. �

Corollary 1.25 (Silver, see [26, Proposition 7.12]). If RVM(κ) then the tree property
holds for κ.

Proof. Suppose RVM(κ), and let ν be a witnessing probability. Suppose T is a
κ-tree. Without loss, T = (κ,<T). As usual, we will identify T and its levels Tα,
α < κ, with the underlying subsets of κ. Our convention is that trees grow upward,
so if 0 is the root of T, 0 <T a for any other a ∈ T, etc. Let λ be such that in
V Randomλ there is j : V → N with cp(j) = κ. Work in V Randomλ .

Then j(T)�κ = T. Let µ = j(ν), so µ witnesses RVM(j(κ)) inside N . For
α < j(κ), let Aα = { β :α <j(T) β }. Since µ is j(κ)-complete, µ(T) = 0 and there
is some α ∈ j(T)κ such that µ(Aα) > 0.

Let b = { β ∈ T :β <j(T) α }, and let 〈 bγ : γ < κ 〉 be its <T-increasing
enumeration. Then µ(Abγ ) ≥ µ(Abρ) whenever γ < ρ. Since κ > ω, for some ρ < κ
we must have µ(Abρ ) = µ(Abτ ) for all τ > ρ.

For β < κ, bρ <T β, let Bβ = { γ < κ :β <T γ }. Notice that µ(Aβ) =
j(ν(Bβ)) = ν(Bβ) for any such β. Let ε = ν(Bbρ). Then ∀β T> bρ, either ν(Bβ) =
ε, or ν(Bβ) = 0 (If 0 < ν(Bβ) < ε, and β ∈ Tγ , then β �= bγ and Bβ ∩ Bbγ = ∅.
But then ν(Bbγ ) ≤ ν(Bbρ \ Bβ) < ε, a contradiction.)

Let b = { β :β ≤T bρ or (bρ <T β and ν(Bβ) = ε) }. Then b = b ∈ V is a
κ-branch through T. �

Stripping away the fat from the above argument allows us to weaken the
hypothesis of Corollary 1.25 to the existence of a λ-saturated ideal on κ for some
λ < κ (see [26, Proposition 16.4]).

Corollary 1.26 (Kunen, see [19, Theorem 5N]). If RVM(c) then ♦c holds. �

This follows from applying to the context of real-valued measurability the
standard proof of ♦κ for κ measurable, we leave the details to the interested
reader.

The main result on preservation of real-valued measurability is the following.

Fact 1.27 (Solovay [38, Theorem 7]). Suppose RVM(κ). Then κ stays real-valued
measurable after forcing with any Randomλ or more generally (by Maharam’s theo-
rem), with any measure algebra. �

Remark 1.28. I do not know if Solovay’s characterization allows for an ‘elementary
embeddings’ proof of Fact 1.27: If RVM(κ) and λ, j,N are as in the proof of
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Theorem 1.6, so V Randomλ |= j : V
≺−→ N , cp(j) = κ, then if γ is an ordinal such

that &'&'γ > j(κ)()() = 1, say, it is not clear how to lift j to an embedding

ĵ : V Randomγ
≺−→ N Randomj(γ)

in V Randomλ∗ ˙Randomµ for some appropriate µ, which seems to be the natural way using
elementary embeddings of arguing about Fact 1.27. Even if this is possible, Solo-
vay’s original argument from [38] would not be superseded; for example, Solovay’s
argument indicates natural ways in which new measures can be produced from the
ones witnessing RVM(κ). For more on this approach, consider Kunen’s proof that
RVM(κ) implies the partition relation κ → (κ, λ)2 for any λ < ω1. See [18] for this
argument.

1.1. Absolutely ccc forcing

We now argue that if P is ccc and F = Randomλ for some λ, then P is still ccc
in V F.

Definition 1.29. Q ∈ V is absolutely ccc iff for all outer models W ⊇ V , W |= Q is
ccc.4

For example Coll(ω,< ω1), Add(ω, 1) (the forcing for adding one Cohen real),
and any σ-centered poset are absolutely ccc. The class of absolutely ccc posets is
closed under finite support products and finite support iterations5. The following
example is slightly more interesting, and we will have several occasions to use it.

Claim 1.30. All measure algebras, in particular all Randomλ, are absolutely ccc.

Proof. Let P = (B, ν) ∈ V be a measure algebra, and let W ⊇ V be an outer
model. Let ω1 = ωW

1 .
Suppose in W that 〈 bα :α < ω1 〉 is an ω1-antichain in B \ {0}. Then we can

assume that for some n > 0, ν(bα) > 1/n for all α. This is a contradiction: For any
N ∈ N the sequence 〈 bm :m < N 〉 is in V and since the bα form an antichain, we
have that ν

(∑B
m<N bm

)
=
∑

m<N ν(bm) > N
n > 1 if N is sufficiently large. �

Claim 1.31. If P is ccc and Q is absolutely ccc, then V Q |= P is ccc.

Proof. Since P×Q ∼= P ∗ Q̌ ∼= Q ∗ P̌, it suffices to see that V P |= Q is ccc, but this
holds by hypothesis. �
Corollary 1.32. Let F = Randomλ and let P be ccc. Then P is ccc in V F. �
Corollary 1.33. The existence of atomlessly measurable cardinals is independent of
the existence of Suslin trees.

4A possible metatheory in which this definition takes place is Morse-Kelley. For a ZFC rendering,

restrict the outer models to those of the form V F for F ∈ V a poset.
5For products, this follows from [31, Theorem II.1.9]. Since the finite support iteration of ccc
posets is again ccc, the result for iterations follows easily from the definition of absolutely ccc,
because if P ∈ V is the finite support iteration of a family 〈 Pα, Q̇α :α < λ 〉, then in any
outer model W ⊇ V , P densely embeds into the finite support iteration (in the sense of W ) of

〈 Pα, Q̇α :α < λ 〉.



Real-valued Measurable Cardinals and Well-orderings of the Reals 91

Proof. Let κ be measurable, and suppose S is a Suslin tree. Then

1 �Randomκ
RVM(c) and S is ccc,

by Corollary 1.32. Thus, V Randomκ |= There is a Suslin tree.
The other direction is immediate from a result of Laver (see [8, Theorem

3.2.31].) Namely, if MAℵ1 holds then for any κ,

V Randomκ |= Every Aronszajn tree is special.

In particular, if κ is measurable and MA holds, then V Randomκ is a model of RVM(c)
where there are no Suslin trees. �

More interesting consequences of the fact that Randomλ is absolutely ccc are
explored throughout the paper.

Stronger versions of the following theorem can be obtained, but this suffices
for our purposes. Notice the particular case where κ is measurable, so Bν is trivial
and G ∈ V .

Theorem 1.34. Suppose RVM(κ) and let ν be a witnessing probability such that
Bν = P(κ)/Nν is homogeneous. Let G be Bν-generic over V , and in V [G] let j :
V → N be the associated generic embedding. Then the forcing j(Randomκ)/Randomκ

is isomorphic in V [G][H ] to Randomj(κ), where H is Randomκ-generic over V [G].

Proof. Start by noticing that (Randomκ)V ∈ N . In N ,

j(Randomκ) = Randomj(κ),

so Randomκ � j(Randomκ), and the quotient forcing makes sense. Let H be
the canonical Randomκ name for the generic filter and recall that, by definition,
j(Randomκ)/Randomκ is (a Randomκ name for) the forcing

P = { q ∈ j(Randomκ) : q is compatible with every p ∈ H }.
Consequently, fix H a Randomκ generic over V [G] and therefore over N , and work
in V [G][H ].

• In N [H ], P ∼= Randomj(κ).
By Fact 1.18.

• In V [G][H ], P is a σ-complete homogeneous boolean algebra.
Recall that ωN ⊂ N , and therefore (by the ccc of Randomκ) ωN [H ] ⊂ N [H ],
from which σ-completeness in V [G][H ] follows. Homogeneity is clear, since P
is already homogeneous in N [H ].

• In V [G][H ], P is a complete measure algebra.
The ‘probability measure’ witnessing P is a measure algebra in N [H ] is a
‘probability measure’ in V [G][H ], since N [H ] is closed under ω-sequences.
Hence, P is a measure algebra. It is ccc, by Claim 1.30. Completeness follows.

• In V [G][H ], P is isomorphic to some Randomρ and, in fact,

P ∼= Random|j(κ)|.

This follows now from Maharam’s theorem. This completes the proof. �
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For a generalization, see the first paragraph of the proof of Claim 3.5.
Theorem 1.34 will prove useful in the following sections, where we obtain the

consistency of a third-order definable well-ordering of R together with real-valued
measurability of the continuum. That we cannot improve the complexity of this
well-ordering in a straightforward fashion is the content of Theorem 2.5 below.

2. Third-order definability

Recall that HODR denotes the class of sets hereditarily ordinal definable using the
elements of R as parameters. Add(κ, λ) is the standard forcing for adding λ many
Cohen subsets of κ.

Lemma 2.1. Let G be F-generic over V , where F = Add(ω, λ) or F = Randomλ, λ ≥
ω1. Let R = RV [G]. Then, in V [G], there is R0 ⊂ R and a nontrivial elementary
embedding j : HODR0

≺−→ HODR such that j�ORD = id.

Corollary 2.2. Let F = Add(ω, λ) or F = Randomλ where λ ≥ ω1. Then in V F,
HODR |= ¬AC and therefore no relation in HODR defines a well-ordering of R. In
particular, V F |= L(R) |= ¬AC.

Proof. In V F there is a transitive class N �= HODR and an elementary embedding
j : N

≺−→ HODR that does not move the ordinals. It follows from [26, Proposition
5.1] that the Axiom of Choice fails in N and therefore in HODR. Since a well-
ordering of R in HODR would induce a well-ordering of HODR in HODR, the result
follows. �
Remark 2.3. Corollary 2.2 is known, although the proof presented here seems to
be new. See for example [31, Exercises VII.E].

Proof of Lemma 2.1. Let G be F-generic over V , where F is as in the statement
of the lemma. By standard arguments (by Maharam’s Theorem 1.15 for the case
F = Randomλ), G ∼= G0×G1, where G0 is F-generic over V and G1 is FV [G0]-generic
over V [G0]. Let R0 = RV [G0] and R1 = RV [G]. In V [G] we define a nontrivial
j : HODR0

≺−→ HODR1 such that j�ORD = id.
For this, notice that any x ∈ HODRi , i = 0, 1, has the form τ(�r, �α) where

�r ∈ Ri, �α ∈ ORD, and τ is some term in the language of HODR.6

Define j by
j
(
τ(�r, �α)HODR0

)
= τ(�r, �α)HODR1 .

We claim j works.

6This language expands the language of set theory by closing under weak Skolem functions, i.e.,
those giving definable terms, so for ϕ(x, y) a formula and z a set, τϕ(z) is defined iff ∃!x ϕ(x, z),
and τϕ(z) = u iff ϕ(u, z). We cannot simply use (definable) Skolem functions, since AC fails in
HODR. If the reader does not want to bother formalizing this language, it suffices that for every
x ∈ HODR there is a formula φ(v1, �v2, �v3) in the language of set theory, and there are reals �r and
ordinals �α such that

HODR |= x = { y :φ(y, �r, �α) }. (†)
The reader should have no problem using (†) to translate our use of terms into standard notation.
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Let ϕ(v0, . . . , vn) be any formula, let τ0(�v0, �v1), . . . , τn(�v0, �v1) be terms, and
let x0, . . . , xn ∈ HODR0 be given by xi = τi(�ri, �αi)HODR0 . By composing each τi

with some projections and some recursive surjections π0 : R → R<ω and π1 :
ORD → ORD<ω, we may assume �ri = r, �αi = α for all i. Let ψ(v0, v1) ≡
ϕ
(
τ0(v0, v1), . . . , τn(v0, v1)

)
and µ(v0, v1) ≡ HODR |= ψ(v0, v1).

The whole point of the argument is that there is a set X ∈ Pω1(λ) such that
r ∈ V [G0�X ], and there are FV [G0�X]-generics over V [G0�X ], G0 and G1, such that
V [G0�X ][G0] = V [G0] and V [G0�X ][G1] = V [G].

Then

HODR0 |= ψ(r, α) ⇐⇒ V [G0] |= µ(r, α)
⇐⇒ ∃p ∈ G0

(
V [G0�X ] |= p �F µ(ř, α̌)

)
(∗)⇐⇒ V [G0�X ] |= 1F �F µ(ř, α̌)
(∗)⇐⇒ ∃q ∈ G1

(
V [G0�X ] |= q �F µ(ř, α̌)

)
⇐⇒ V [G] |= µ(r, α)
⇐⇒ HODR1 |= ψ(r, α),

where (∗) holds by the weak homogeneity of F. Recall that a forcing P is weakly
homogeneous (see [26, before Proposition 10.19]) iff for all p, q ∈ P there is an
automorphism π of P such that π(p) is compatible with q. Clearly, F is weakly ho-
mogeneous. It is a basic result in the theory of forcing ([26, Proposition 10.19]) that
if P is weakly homogeneous, φ(v1, . . . , vn) is a formula in the forcing language, all
of its free variables displayed, and x1, . . . , xn ∈ V , then either 1 �P ϕ(x̌1, . . . , x̌n)
or else 1 �P ¬ϕ(x̌1, . . . , x̌n).

The chain of equivalences shown above implies immediately that j is well
defined and elementary. By definition, j�ORD = id, and we are done. �

Remark 2.4. Notice that with the same notation as above,

j�L(R0) : L(R0)
≺−→ L(R1).

Essentially the same argument shows that if ω1 ≤ λ1 ≤ λ2, H1 is Randomλ1 -
(respectively, Add(ω, λ1)-) generic over V , and H2 is Randomλ2 - (respectively,
Add(ω, λ2)-) generic over V [H1], then in V [H1][H2] there is a nontrivial embedding

j : L(RV [H1]) ≺−→ L(RV [H1][H2])

such that j�ORD = id. To see this, it suffices to argue that if ϕ(x, y) is a formula, r

is a real, α is an ordinal, and Ṙ is a term (for the appropriate forcing) for the reals
of the generic extension, then 1 �Randomλ1

L(Ṙ) |= ϕ(r, α) iff 1 �Randomλ2
L(Ṙ) |=

ϕ(r, α).
Suppose |λ1| < |λ2|, and let P be the forcing for collapsing λ2 to λ1 with

countable conditions, so P does not add any reals. By Fact 1.19, if G is Randomλ1 -
generic over V P then G is Randomλ1 -generic over V . The same holds for Randomλ2 -
generic filters, and we are done by weak homogeneity: In V P, Randomλ1 and
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Randomλ2 are equivalent. Let H be P-generic over V and let G be Randomλ1 -generic
over V [H ]. Then the reals of V [H ][G] and the reals of V [G] coincide. But G is also
Randomλ2-generic over V [H ].

Let r be a real in V [G]. Recall that Randomλ and Randomω ∗ Randomλ are
isomorphic for any cardinal λ, by Maharam’s Theorem 1.15, so we may write
G ∼= G0 × G1 where r ∈ V [G0], G0 is generic over V for a forcing isomorphic to
Randomω, and G1 is generic over V [G0] for a forcing isomorphic to Randomλ1 . Let
α be an ordinal and let ϕ be a formula. It follows that

V [H ][G] |= L(R) |= ϕ(r, α) ⇐⇒ V [G] |= L(R) |= ϕ(r, α)
⇐⇒ ∃p ∈ G1

(
V [G0] |= p �Randomλ1

ϕ(ř, α̌)
)

⇐⇒ V [G0] |= 1 �Randomλ1
ϕ(ř, α̌),

and exactly the same argument with Randomλ2 instead of Randomλ1 shows that

V [H ][G] |= L(R) |= ϕ(r, α) ⇐⇒ V [G0] |= 1 �Randomλ2
ϕ(ř, α̌)

and, therefore,

V [G0] |= 1 �Randomλ1
ϕ(ř, α̌) ⇐⇒ V [G0] |= 1 �Randomλ2

ϕ(ř, α̌),

as we needed to show (notice we can ignore G0 if r ∈ V ).
The argument for Cohen forcing is identical.

Theorem 2.5. If κ ≤ c and RVM(κ) then no well-ordering of R belongs to L(R).

Proof. The argument is standard. Assume by contradiction that RVM(κ) and there
is ϕ(x, y, z, w) a formula in the language of L(R) such that for some real t and
ordinal α, the relation between reals

r < s ⇐⇒ L(R) |= ϕ(r, s, t, α)

is a well-ordering of R. The least such α is definable in L(R), so there is such a
formula ϕ′ all of whose parameters are reals. Let λ be as above, so in V Randomλ

there is an embedding j : V
≺−→ N such that cp(j) = κ and ωN ⊆ N . Then

j�L(R)V : L(R)V ≺−→ L(R)V Randomλ
.

In particular, there is t ∈ RV such that ϕ′(x, y, t) still defines a well-ordering of
RV Randomλ . This is impossible by Lemma 2.1 because λ ≥ ω1. �

It follows in particular that no projective (i.e., second-order in the language
of arithmetic) formula defines a well-ordering of the reals if there are atomless
real-valued measurable cardinals.

Definition 2.6. A Σ2
n formula is a formula ψ over a three-sorted structure of the

form
(P(P(N)),P(N), N,∈, . . . )

such that
ψ ≡ ∃X1 ⊆ P(N)∀X2 ⊆ P(N) . . . ϕ(X1, X2, . . . ),
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where there are n alternations of quantifiers over subsets of P(N), and ϕ is a
projective statement, i.e., it only involves quantification over N and P(N).

It is standard to refer to a Σ2
n statement as being third-order (in the language

of arithmetic); similarly, a projective statement is usually called second-order (in
the language of arithmetic). An equivalent formulation is mentioned below, in
Remark 2.8.

We define Π2
n, ∆2

n as usual: A statement is Π2
n iff its negation is Σ2

n and it is
∆2

n iff it is simultaneously equivalent to Σ2
n and Π2

n statements. Notice that if a
linear ordering of R is Σ2

n or Π2
n, then it is automatically ∆2

n: Suppose φ(x, y) is a
Σ2

n formula defining a linear ordering. Then ¬φ(r, s) iff s = r or φ(s, r).
We close this section with a fact that (we hope) helps to understand the form

taken by the well-orderings obtained in the following sections. The point is that
we want to codify definability computations in the language of set theory within
the language of third-order arithmetic.

We state the fact in a somewhat informal manner, to emphasize its flexibility.
Here, ZFC−ε is a sufficiently strong fragment of ZFC. For a specific version, we can
take ZFC−ε to mean ZFC− + P(R) exists (considering a large Hη instead of Vη

in the proof below), or ZFC�Σ200, i.e., ZFC with replacement restricted to Σ200

statements.

Fact 2.7. Let ϕ(�x) be a Σ2
1-formula. Then there is ψ, and a transitive structure

M |=ZFC−ε such that R⊆M , |M |=c, or even ωM ⊆ M , such that for all reals �r,

ϕ(�r) ⇐⇒ M |= ψ(�r).

Proof. The existence of such an M is easily seen to be equivalent to a Σ2
1-formula.

Conversely, given ϕ, let η be large enough, so for any �r,

ϕ(�r) ⇐⇒ Vη |= (P(R), R, ω, . . . ) |= ϕ(�r),

and we can take as M a suitable substructure of Vη. �
Remark 2.8. In fact, the pointclass Σ2

n can be identified by this method with
the class Σn(Hc+ ,∈, Hω1 , Hω), where Hω1 and Hω are seen as parameters and
therefore quantification over them is considered bounded.

Fact 2.7 and Remark 2.8 motivate the general structure of the constructions
that produce Σ2

n-well-orderings: A model needs to be produced satisfying certain
first-order property ψ (somehow related to properties of the surrounding universe).
Since the model can resemble the first-order theory of the surrounding universe as
much as necessary, the need to satisfy ψ is in general not the main problem and
is expected in practice to be achieved by forcing. The difficulty arises in trying to
isolate the model or models that we have in mind from possibly fake ones, which
can be thought of as proving a “correctness” theorem. This suggests the need to
establish some kind of “thinness” condition, usually in tension with the width the
forcing extension provides, this being in practice the main source of complications
when implementing this strategy. This general framework will be illustrated with
the results of this paper.
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3. Σ2
2-well-orderings

We begin with a construction based on a technique which goes back at least to
Woodin’s work on generalized Prikry forcing. Starting with a measurable cardinal,
this technique produces a model where the cardinal is real-valued measurable, and
the generic codes a subset of the reals. This construction is a prototype of several
arguments showing the consistency of RVM(c) with different kinds of definable
well-orderings, and we illustrate some of them. In section 6 we show how, working
over L[µ], a variation due to Woodin of the construction given in this section
establishes the consistency of real-valued measurability of the continuum together
with a ∆2

1-well-ordering of R. Here we obtain the consistency of RVM(c) together
with a ∆2

2-well-ordering of R without any restrictions in the large cardinal structure
of the universe. The combinatorial tool we use to carry out our coding was first
considered in [3], in the presence of MA.

Theorem 3.1. If κ is measurable in V and 2κ = κ+, then there is a forcing F of
size κ such that

1 �F c = κ, RVM(c), and there is a ∆2
2 well-ordering of R.

Proof. By a preliminary forcing, if necessary, we may assume GCH holds below κ
(see for example [25]).

Let Q = Randomκ. Let P be the Easton product over the inaccessible cardi-
nals λ < κ of

∏
n∈ω Add(λ+1+3n, λ+3+3n), where the product is inverse (i.e., fully

supported). Let S = P × Q, and let GP × GQ be S-generic over V .
The proof rests on a “lifting” argument, which we isolate as follows:

Claim 3.2. Let j : V → N be an ultrapower embedding by a normal measure on κ.
Then j(Q)/Q is isomorphic to an appropriate random forcing in any intermediate
model between V [GQ] and V1 := V [GQ][GP], inclusive, i.e., for any such model M
there is a λ such that

M |= j(Q)/Q ∼= Randomλ.

There is G∗ ∈ V such that:

• If H is j(Q)/Q-generic over V1 then, in V1[H ], j lifts to

j2 : V1 → N [GP][G∗][GQ][H ]

and therefore (by Solovay’s Theorem 1.6) RVM(c) holds in V1.
• The restriction of j2 to V [GP] is j1 : V [GP] → N [GP][G∗] (so κ remains

measurable in V [GP]). There is a forcing Ptail ∈ N such that j(P) = P×Ptail,
and G∗ is Ptail-generic over N .

Similarly, the restriction of j2 to V [GQ][H ] is j3 : V [GQ] → N [GQ][H ] and
witnesses RVM(c) in V [GQ]. Finally, RV [GQ] = RV [GQ][GP].
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Proof. We begin by showing:

Subclaim 3.3. P preserves the measurability of κ. In fact, there is G∗ ∈ V such
that whenever G is P-generic over V , G×G∗ is j(P)-generic over N , and we can
lift j to an embedding j1 : V [G] → N [G × G∗].

(Cf. [23, Lemma 2.2.4] or [13, Fact 3.1].)

Proof. By elementarity, in N , j(P) = P×Ptail where Ptail is the Easton product of∏
n∈ω Add(λ+1+3n, λ+3+3n), the product being inverse (i.e., fully supported) and λ

ranging over the inaccessible cardinals λ ∈ [κ, j(κ)). In N , this set is κ+-closed. But
κN ⊂ N , so in fact it is κ+-closed in V . Now notice that |PN (Ptail)| = |(2j(κ))N | =
|j(2κ)| ≤ (2κ)κ = 2κ = κ+, where the last equality holds by hypothesis. Thus,
the number of dense subsets of Ptail which belong to N is at most κ+, and a
straightforward induction lets us build (in V ) a decreasing sequence of conditions
which meet all of them. The filter G∗ they generate is therefore Ptail-generic over N .

It remains to argue that if G is P-generic over V , then G×G∗ is j(P)-generic
over N , which amounts to showing that G and G∗ are mutually generic. If so, j
lifts to j1 in the usual way7: For σ a P-name, j1(σG) := j(σ)G×G∗ . The standard
argument (see [13, Fact 2.1]) proves that j1 is well defined and elementary.

But mutual genericity is clear: Since N [G∗] ⊆ V , if G is P-generic over V , it
is also P-generic over N [G∗].

This completes the proof of Subclaim 3.3. �

Notice that P is ω1-closed, so RV [GP×GQ] = RV [GQ].

Subclaim 3.4. In V [GP][GQ][H ], j1 lifts to

j2 : V [GP][GQ] → N [GP][G∗][GQ][H ].

The restriction of j2 to V [GQ] is an embedding

j3 : V [GQ] → N [GQ][H ]

definable in V [GQ][H ].

Proof. As expected, simply set

j2(τGQ
) = j1(τ)GQ

�H ,

for τ a Q-name in V [GP]. As before, j2 is well defined and elementary. Since j1
extends j, j3 = j2�V [GQ] : V [GQ] → N [GQ][H ] is given by j3(τGQ

) = j(τ)GQ
�H

for τ a Q-name in V , and is definable in V [GQ][H ] as claimed.
This completes the proof of Subclaim 3.4. �

The proof of Claim 3.2 is complete. �

7This is the standard way of showing that if ρ is measurable, then it is still real-valued measurable
in V Randomρ .
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In V [GQ], let A = 〈 rα :α < κ 〉 be a well-ordering of R. In V [GQ][GP], define
g as follows:

Let 〈 δα :α < κ 〉 enumerate in V the inaccessible cardinals below κ. Let Gα

be the part of GP which is generic for
∏

n∈ω Add(δ+1+3n
α , δ+3+3n

α ). Write Gα
∼=∏

n∈ω Gα(n), where Gα(n) is the part of Gα generic for Add(δ+1+3n
α , δ+3+3n

α ). Then

g =
∏
α<κ

G∗
α,

where G∗
α =

∏
n∈ω G∗

α(n) and

G∗
α(n) =

{
Gα(n) if n ∈ rα,

1Add(δ+1+3n
α ,δ+3+3n

α ) if n /∈ rα.

Claim 3.5. κ = c stays real-valued measurable in V [GQ][g].

Proof. By Theorem 1.34, j(Q)/Q is isomorphic to Randomj(κ) in V [GQ]. It follows
that in V [GQ][GP] as well as in V [GQ][g], j(Q)/Q is still a complete measure
algebra, since the forcing for which g is generic is a factor of P, which is ω2-
closed in V and therefore ω2-dense in V [GQ] by Easton’s lemma, see [13, Fact
4.1]. Since j(Q)/Q was homogeneous in V [GQ], it is still homogeneous in V [GQ][g]
and in V [GQ][GP]. We conclude that j(Q)/Q is still isomorphic to Randomj(κ), by
Maharam’s Theorem 1.15.

Let H be j(Q)/Q-generic over V [GQ][GP]. We will show that in V [GQ][g][H ],
j lifts to

j∗ : V [GQ][g] → N [j∗(GQ)][j∗(g)].
This amounts to defining j∗(GQ) and j∗(g), and checking that the induced map j∗

is well defined and elementary. Once this is done, Solovay’s Theorem 1.6 implies
the claim.

Set j∗(GQ) = GQ
�H . To define j∗(g), it suffices to define j∗(g)[κ,j(κ)) (so

j∗(g) = g�j∗(g)[κ,j(κ))). The intention is that the definition of j∗(g) copies that
of g, so we must start by defining j∗(A).

Since A ∈ V [GQ], j3(A) ∈ V [GQ][H ]. We set j∗(A) = j3(A) (with j3, etc,
as in Claim 3.2). The key observation is that we do not really need a whole j(P)-
generic to define j∗(g)[κ,j(κ)), but a Ptail-generic suffices: Remember that G∗, as
built in Subclaim 3.3, is in V . We can now set

j∗(g)[κ,j(κ)) :=
∏

α∈[κ,j(κ))

∏
n∈ω

G∗∗
α,n,

where G∗∗
α,n is the Add(δ+1+3n

α , δ+3+3n
α )-generic added by G∗ to N , if n ∈ j3(r)α,

and the trivial condition otherwise.
Here, 〈 δα :α < j(κ) 〉 = j(〈 δα :α < κ 〉) is the increasing enumeration of the

inaccessible cardinals in N below j(κ) and j3(A) = 〈 j3(r)α :α < j(κ) 〉 is the
well-ordering of the reals of N .

Extend j∗ to a map

j∗ : V [GQ][g] → N [j∗(GQ)][j∗(g)]
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in the usual way. Notice that j∗ is simply the restriction of j2, as defined in
Subclaim 3.4, to V [GQ][g]. This proves j∗ is well defined and elementary. Finally,
notice that j∗ is definable in V [GQ][g][H ]. This concludes the proof of Claim 3.5.

�

Remark 3.6. The argument just given is quite general. It works as long as P is
a reasonably definable product of sufficiently closed small forcings. The set we
called A can code any subset of the reals in V [GQ][GP]. By coding A inside a
“subproduct” g of GP, we avoid having to set up any sort of book-keeping devices
in the ground model in order to define the well-ordering alongside the iteration.
As a matter of fact, we do not need to worry about defining in the ground model
(as an iteration or otherwise) the forcing whose generic is g.

Notice also that, in spite of this generality, some argument was required,
since it is not necessarily true that if W is a forcing extension of V preserving
RVM(κ), then any intermediate extension V ⊆ M ⊆ W satisfies RVM(κ) as well.
This observation (with κ measurable in V and W ) is due to Kunen, see [30]; we
present in section 4 a proof of this result, different from the argument in [30]. The
proof in section 4 uses the technique illustrated in this section: Starting with an
embedding j : V → N , we find in V an N -generic filter for a sufficiently closed
forcing notion living in N . A proof dealing specifically with atomless measurability
has been produced by Gitik, see [22, Theorem 2]; Gitik’s proof can be seen as an
elaboration of the argument in section 4, and the reader may find it profitable to
read section 4 before consulting [22].

Now we continue with the proof of Theorem 3.1. All what remains is to see
that we can “decode” the well-ordering A from g in a Σ2

2-way in V [GQ][g]. The
forcing F is then the factor of S for which GQ × g is a generic.

The key to our coding is the following notion (see [4]):

Definition 3.7. Let λ be regular. The club base number for λ is

min{ |X | :X ⊆ P(λ) and ∀ club C ⊆ λ∃ club D ∈ X (D ⊆ C) }.

So the club base number for λ is the coinitiality of the club filter at λ, ordered
under inclusion. Any collection X of club subsets of λ realizing the minimum above
generates the club filter at λ by closing under supersets.

If λ is regular and 2λ = λ+, then the club base number for λ is λ+, while
if λ++ Cohen subsets of λ are added, their closures are club sets containing no
club from the ground model, and mutual genericity guarantees that the club base
number at λ is λ++.

It follows that in V [g] the inaccessible cardinals below κ are just the δα, α < κ,
and the club base number for δ+1+3n

α is either δ+2+3n
α or δ

+3(n+1)
α depending on

whether G∗
α(n) is trivial or not, since the base number for δ+1+3n

α1
is not affected

by forcing with (a subproduct of)
∏

m∈ω Add(δ+1+3m
α2

, δ+3+3m
α2

) for α2 �= α1.
Maybe a more detailed argument is in order: Let λ < κ be inaccessible, let

n < ω, and write P ∼= Pλ,n×Add(λ+1+3n, λ+3+3n)×Pλ,n, where Pλ,n corresponds to



100 A. E. Caicedo

the factors of P that add Cohen subsets to cardinals strictly smaller than λ+1+3n,
and Pλ,n corresponds to those factors that add Cohen subsets to strictly bigger
cardinals. Then Pλ,n is sufficiently closed that it cannot (“by accident”) add a
subset of λ+1+3n, while Pλ,n satisfies a sufficiently small chain condition that any
club subset of λ+1+3n that it adds contains a club in the ground model. Finally,
GQ is added by ccc forcing, so it does not affect any of the club base numbers
that concern us. It follows that in V [GQ][GP] the only club base numbers that are
affected are those that we have explicitly changed by means of GP, and therefore
in V [GQ][g] we have coded A by means of the club base numbers which have been
altered.

Now observe that in V [GQ][g] we can define A, or rather the corresponding
order relation <A on R as follows:

Let Ψ(M) denote the conjunction of the following requirements:

M |= ZFC−, M is transitive, |M | = c, and R ⊆ M . (Notice that this
implies ORDM ≥ c.) Moreover,

1. M computes cofinalities correctly, that is, if λ, µ ∈ M , and there
is f : λ → µ cofinal, then there is such an f ∈ M .

2. For all C ⊆ λ < c club, there is D ∈ M , D ⊆ λ club, such that
D ⊆ C.

3. M computes club base numbers correctly, that is, for all λ < c,
F ⊆ P(λ)M collection of club sets, |F| < c, there is G ∈ M collection
of club sets such that G is coinitial in F.8

Finally, for all r ∈ R there is in M a unique sequence of club base
numbers starting at a weakly inaccessible9 which (in the obvious way)
code r, and any weakly inaccessible codes some r.
Notice that Ψ(M) is the conjunction of the statement that |M | = c and a

Π1(Hc+ ,∈, Hω1) statement about M . Notice as well that M does not have any
cardinals above c. For example, fixing a surjection π : R → M , condition 2 is seen
to be Π1 since the existential quantifier is actually a quantifier over reals, i.e., there
is a real r such that, in M , π(r) = D is a club set.

For x, y reals, let ψ(x, y) hold iff

There is M such that Ψ(M) holds and in M the sequence coding x
appears before the sequence coding y.
Since M is only a model of ZFC−, P(λ)M as in 3 above, is to be interpreted

as a definable class. This does not affect the desired complexity of ψ.

8The requirement on the size of F is not essential. We just include it to ensure the universal
quantifier in the definition of the well-ordering we obtain actually ranges over bounded subsets
of c.
9Since the ground model satisfies GCH, the weakly inaccessible and the strongly inaccessible
cardinals coincide here, and we took care of coding reals at each inaccessible cardinal. It is by
no means essential that we decide to code using the inaccessible cardinals, and the coding could
have occurred at many other places (say, starting at limit cardinals), with only a straightforward
variation in the construction above being required.
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The relation ψ just defined can be rendered Σ2
2 in a straightforward fashion.

We are done once we verify that x <A y holds for reals x, y if and only if ψ(x, y)
does. That x <A y implies ψ(x, y) is easy, M = V [GQ][g]κ is a witness. To see the
converse just observe that any M witnessing ψ(x, y) is correct about cofinalities
below κ, and computes correctly club base numbers of cardinals below κ. The
uniqueness of the coding of reals by club base numbers ensures that no fake codings
(witnessing false relations x <A y) may arise, since every inaccessible below κ
is assigned some real this way, and this assignment is a bijection; in particular,
ORDM = c must hold (since no real is coded by c). Since g was defined precisely
to code A using the club base numbers, ψ(x, y) implies x <A y. This completes
the proof of Theorem 3.1. �
Remark 3.8. Notice that M as above is not a model of “R exists”. R and the
relation ψ are only definable over M . Obviously, any transitive model N of enough
set theory that contains all the reals and where there is a well-ordering of R must
satisfy ORDN > c.

Let (Σ2
2)

+ denote the class of statements about the reals expressible as a
Boolean combination of Σ2

2 statements. As a consequence of the argument above
and Solovay’s theorem on preservation of real-valued measurability (Fact 1.27) we
obtain that generic invariance of (Σ2

2)
+ with respect to real-valued measurability

of the continuum10 is not a theorem of ZFC, even in the presence of projective
absoluteness. In effect, the fact that ψ defines a well-ordering of R, for ψ as above,
can be expressed as a (Σ2

2)+ statement11, it can be made true over V as long as
there are measurable cardinals in V , and can be made false afterwards simply by
adding ω1 many random reals, see Lemma 2.1.

10Generic invariance of a class Γ of sentences with respect to a statement φ means that whenever
P ∗ Q̇ is a two-step iteration of set forcings such that V P |= φ + 1

Q̇
� φ, then for all ψ ∈ Γ,

V P |= ψ iff V P∗Q̇ |= ψ. For example, it is a theorem of Woodin that if there is a proper class of
cardinals which are either measurable Woodin or strongly compact, then generic invariance of
Σ2

1 holds with respect to CH (see for example [33, Theorem 3.2.1]).
11It is not accurate to express it in a Σ2

2 way, even though the relation ψ is ∆2
2 in V [GQ][g]: Let

ψ1 and ψ2 be Σ2
2-formulas such that for all reals r, s, ψ(r, s) ⇔ ψ1(r, s) ⇔ ¬ψ2(r, s).

The fact that ψ defines a well-ordering of R can be formalized as follows:

∀x, y, z ∈ R
[
(ψ(x, y) ∨ x = y ∨ ψ(y, x)) ∧ (¬ψ(x, x)) ∧ (ψ(x, y) → ¬ψ(y, x))

∧ (ψ(x, y) ∧ ψ(y, z) → ψ(x, z)) ∧ ∃n¬ψ(xn+1, xn)
]
,

where x �→ 〈 xn :n < ω 〉 is some recursive bijection between R and Rω . This statement can
certainly be expressed in a Σ2

2 way if ψ1 and ψ2 are judiciously used in place of ψ in the displayed
formula above. However, we must add to it the clause that ψ1(x, y) ↔ ¬ψ2(x, y) (which is not
a Σ2

2 statement), since this equivalence is certainly vital for the validity of the assertion that ψ

defines a well-ordering, but it is not a theorem and must therefore be explicitly claimed.
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4. A result of Kunen

In this section we sketch a proof (which is probably folklore) of the result of Kunen
mentioned in Remark 3.6. We use the technique illustrated in the previous section
of finding, in the ground model, filters that are generic over inner models for forcing
notions that are sufficiently closed.

Theorem 4.1 (Kunen). Assuming the consistency of measurable cardinals, it is
consistent that there are models M ⊂ W ⊂ V and a cardinal κ such that κ is
measurable in M and V but not in W .

Kunen’s argument is different from the one to follow. He starts with a ground
model N where there is a measurable cardinal κ, and adds a generic S to N for
the Silver preparation forcing so, in M = N [S], κ is measurable, and it remains
measurable after adding to M a Cohen subset of κ. In W = M [G] there is a
κ-Suslin tree (so κ is not measurable). G is generic for a forcing like the Prikry-
Silver forcing ([9, §7]), but care is taken to ensure that the tree that is added
is homogeneous. Finally, in V = W [H ] the tree is killed in the usual way. The
iterated forcing that first adds G and then adds H is equivalent to adding over M
a Cohen subset of κ, so κ is measurable in V . The details of this argument can be
found in [30].

In the argument below, we avoid the need for the preparation forcing by
working over a nice inner model. Recall:

Definition 4.2. By L[µ] we mean the smallest proper class inner model of the
theory

ZFC + “There exists a measurable,”

in this context, by µ we always mean a witness to measurability, i.e.,

L[µ] |= µ is a normal κ-complete measure on some cardinal κ,

and by smallest we mean that κ is as small as possible (L[µ] is sometimes called
the core ρ-model, see [15, Definition 13.8]).

We abuse notation in the usual way, and occasionally talk about the theory
V = L[µ]. The minimality assumption is just adopted for definiteness, and not
required in the arguments; of course if, for some U and λ,

L[U ] |= U is a normal λ-complete measure on λ,

then L[U ] |= V = L[µ].

Proof. The idea of the proof is to start with a measurable cardinal κ and a sta-
tionary set S ⊂ κ+. We carefully associate to S a sequence

〈Sδ : δ < κ inaccessible 〉 ,

Sδ ⊂ δ+ stationary, in such a way that the stationarity of the Sδ can be destroyed
by forcing while the stationarity of S is preserved. By a reflection argument, this
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will contradict the measurability of κ in the extension, but a further extension (de-
stroying the stationarity of S) resurrects its measurability, providing the example
we desire.

Recall ([1, Definition 1.1]) that a stationary subset S of a regular cardinal
λ is called fat iff for every club C ⊆ κ, S ∩ C contains closed sets of ordinals of
arbitrarily large order types below κ. It is shown in [1, Theorem 1] that if λ = ρ+

where ρ<ρ = ρ, 2ρ = λ, and S ⊆ λ is fat, then there is a λ-distributive forcing
P = PS such that |P| = λ and P adds a club C ⊆ S. P is just the set of bounded,
closed subsets of S, ordered by end extension. It follows from [1, Lemma 1.2] that if
λ = ρ+ where ρ is regular, A ⊂ {α < λ : cf(α) = ρ }, and {α ∈ λ\A : cf(α) = ρ }
is stationary, then λ \A is fat. In this case, if GCH holds, then Pλ\A is η-closed for
all η < ρ.

Work in L[µ]. Let jµ : L[µ] → M1 be the embedding by the normal measure
µ, and let κ = cp(jµ), so P(κ)L[µ] = P(κ)M1 and, in particular, (κ+)L[µ] = (κ+)M1 .

Notice that there is a set S ∈ M1 such that S is a stationary subset of κ+

in L[µ], ∀α ∈ S (cf(α) = κ), and {α ∈ κ+ \ S : cf(α) = κ } is also stationary in
L[µ] (for example, because a κ× κ+ Ulam matrix defined in M1 would still be an
Ulam matrix in L[µ], see [31, Theorem II.6.11]).

Fix a function f such that jµ(f)(κ) = S, so for µ-almost every inaccessible
δ < κ, f(δ) is a stationary subset of δ+ concentrating on the ordinals of cofinality
δ such that {α ∈ δ+ \ f(δ) : cf(α) = δ } is also stationary. By redefining f on a
µ-measure zero set, if necessary, we may assume that this holds for all inaccessible
cardinals δ < κ.

Consider the Backward Easton support iteration Pκ of forcings Fδ, δ < κ
inaccessible, such that Fδ = Pδ+\f(δ) adds a club subset of δ+ \ f(δ). Notice that
Pκ is κ-cc ([9, Corollary 2.4]) and that, for every inaccessible δ, Pκ factors as
Qδ ∗ Fδ ∗ Qδ where Qδ is, say, δ++-closed, and Qδ preserves the stationarity of
f(δ).

By elementarity, in M1, j(Pκ) = Pκ ∗ Fκ ∗ Qκ, where Fκ adds a club subset
of κ+ \ S and Qκ is κ++-closed.

Let Gκ be Pκ-generic over L[µ], and let g be Fκ-generic over L[µ][Gκ].

Claim 4.3. κ is measurable in L[µ][Gκ][g].

Proof. We find in L[µ][Gκ][g] a lifting

j : L[µ][Gκ] ≺−→ M1[j(Gκ)]

of jµ. This suffices because P(κ)L[µ][Gκ] = P(κ)L[µ][Gκ][g], so the L[µ][Gκ]-ultrafilter
derived from j is an ultrafilter on κ, and it is straightforward to verify that it is
non-principal and κ-complete.

The lifting is found arguing as in Claim 3.2: Qκ is at least κ+-closed (i.e.,
closed under extensions of decreasing sequences of length < κ+) in M1[Gκ][g]
and, in fact, it is κ+-closed in L[µ][Gκ][g]. This follows from standard arguments
about Backward Easton iterations, and is almost verbatim as [14, Lemma 11.3 and
Lemma 11.6], to which we refer for further details. Since, in L[µ][Gκ][g], |j(κ)| =
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κ+, there is in L[µ][Gκ][g] an M1[Gκ][g]-generic filter H . Defining j(Gκ) = Gκ ∗
g ∗ H , jµ lifts in the usual way to an embedding j as required.

This concludes the proof of Claim 4.3. �
Claim 4.4. κ is not measurable in L[µ][Gκ].

Proof. Suppose otherwise, and let k : L[µ][Gκ] → N be the corresponding embed-
ding coming from a normal measure on κ. Then k�(P(κ) ∩ L[µ]) is the restriction
to P(κ) ∩ L[µ] of an iteration of jµ (see for example [26, Exercise 20.13]), and
therefore k(f)(κ) = jµ(f)(κ) = S.

But then, by elementarity, k(Gκ) adds a club set killing the stationarity of
S. This contradicts that Pκ is κ-cc. �

Theorem 4.1 follows at once, taking M = L[µ], W = L[µ][Gκ], and V =
L[µ][Gκ][g]. �
Remark 4.5. The use of L[µ] in the previous argument is by no means essential:
An additional preparation forcing (ensuring that in any future extension, for any
embedding k with critical point κ, k(f)(κ) = S) would allow us to start with
an arbitrary ground model (of GCH) instead of L[µ]. See [22, Theorem 2] for an
elaboration on the argument above that produces an example where κ is atomlessly
measurable in the final model V , but the reals of V are not obtained by adding
random reals to any inner model where κ is measurable.

5. Anticoding results

The results in this section are folklore, although our presentation may be novel.
Of course, the complexity ∆2

2 of the well-ordering we obtained in section 3 is
an overkill; notice the third-order universal quantifier only ranges over bounded
subsets of κ. It is natural to wonder whether we can improve the complexity of the
well-ordering to be Σ2

1. The problem with following a strategy similar to the one
described in 3 is that we need to ensure correctness of the model M with respect
to the combinatorial structure of the universe that carries out the coding (the
club base numbers, for example). This level of correctness needs to be attained via
projective and (at most) third-order existential statements. This seems to suggest
that we need to be able to code (suitable) bounded subsets of κ by reals. In general
(as in the arguments of [3] and [4]), this is done by arranging that the universe
satisfies something like a sufficiently strong fragment of MA to be able to use the
coding provided by almost-disjoint forcing.

Unfortunately (as it is well known, see [37]) MA itself fails after adding even
one random real, so it is incompatible with real-valued measurability of the con-
tinuum. For example:

Theorem 5.1. If RVM(κ) holds and κ ≤ c, then there is a ccc partial order P such
that P × P is not ccc.

Corollary 5.2. If RVM(κ) holds and κ ≤ c, then MAω1 fails. �
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The hypothesis we display is not ideal, but there is some subtlety here, since
Prikry showed that MA is compatible with quasi-measurability of the continuum,
see [19, Proposition 9G].

Remark 5.3. Corollary 5.2 has been shown in many ways independently of Theo-
rem 5.1. Arguments more in the spirit of forcing axioms are possible: For example,
if κ is atomlessly measurable, then

• non(R,N) = cov(R,M) = add(M) = add(N) = p = ω1. Here, N is the ideal
of Lebesgue null sets and M is the ideal of meager sets.

• b < κ.
See [19] and references within. The particular case RVM(c) ⇒ b < c is due to
Banach-Kuratowski [7].

It is a well-known result (due to Bell) that p is the smallest cardinal λ such
that MAλ(σ-centered) fails, see [17, §14]. Recall that almost disjoint forcing is
σ-centered.

Proof of Theorem 5.1. This is a corollary of the following result of Roitman12 [37]:

Lemma 5.4. In V Randomω there is a ccc partial order whose square is not ccc. �
Corollary 5.5. Roitman’s result 5.4 holds in V Randomλ and not just V Randomω .

Proof. Since Randomλ/Randomω
∼= Randomλ, Corollary 5.5 follows from Corollary

1.32. �
Assume RVM(κ) where κ ≤ c, and let λ be such that in V Randomλ there is an

embedding j : V → N with cp(j) = κ. By Corollary 5.5 there is in V Randomλ a ccc
partial order P whose square is not ccc. By taking Skolem hulls, we may assume
|P| ≤ ℵ1. By Remark 1.21, we may as well assume N is closed under ω1-sequences,
so we can take P ∈ N and

N |= P is ccc but P × P is not.

But then, by elementarity, there is such a partial order in V . �
Question 5.6 (Fremlin). Suppose κ is atomlessly measurable. Are there two ccc
posets P and Q such that P × Q has an antichain of size κ?

Another forcing axiom that is used to code information about subsets of reals
is the Open Coloring Axiom OCA, see [20].

Theorem 5.7. If RVM(κ) holds and κ ≤ c, then OCA fails.

This is essentially due to Todorčević.

Proof. The key to this result is the notion of an entangled linear order, see [41].
The following is [41, Theorem 2]:

Lemma 5.8. If E is a set of random reals, then E is ω1-entangled. �

12In [8, Theorem 3.2.30], this is erroneously attributed to Galvin. Galvin devised a general
method to construct such posets. Roitman showed that the construction works in V F, where
F = Add(ω, 1) or F = Randomω.
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I think the following is due to Todorčević and Baumgartner, see [20] for a proof.

Fact 5.9. If there is an uncountable ω1-entangled subset of R, then OCA fails13. �

Theorem 5.7 now follows as before: For some λ, in V Randomλ there is an em-
bedding j : V → N with cp(j) = κ and ω1N ⊆ N , so in N there is an uncountable
ω1-entangled subset of R and, by elementarity, there is such a set also in V . By
Fact 5.9, OCA fails in V .14 �

These arguments should make it clear that any statement sufficiently fragile
in the sense that random forcing destroys it and sufficiently absolute in the sense
that it transfers to the generic ultrapower of the ground model, is bound to fail if
there are atomlessly measurable cardinals. Thus, any naive attempt to improve the
complexity of the well-ordering obtained in Section 3 by coding bounded subsets
of κ by reals (where κ was measurable in the ground model and turns atomlessly
measurable in the extension), say by including into the product we were calling P
small factors that will do the coding of bounded subsets, runs into the immediate
difficulty that we are adding random reals by homogeneous forcing (by the poset
we were calling Q, which is just Randomκ), which most likely will undo our coding.
We would then have to do the coding in such a way that no initial segment of
the iteration would suffice to code a bounded set of κ in the final model, but this
seems difficult as well, because bounded sets of κ would most likely appear in
initial segments of the iteration.

This section has highlighted inherent difficulties that a proof of the consis-
tency of RVM(c) together with a Σ2

1-well-ordering of the reals must face.
Woodin’s result in the following section solves them in an indirect manner, by

restricting in a very serious way the universe over which the argument takes place.
The question of whether measurability of κ and GCH (or for that matter, any
set of hypotheses which do not carry anti-large cardinal restrictions, or smallness
requirements on the universe) suffice to force a model of RVM(c) with a Σ2

1-well-
ordering of R is still open. In section 7 we discuss an alternative approach.

6. Σ2
1-well-orderings

The result of this section is due to Woodin.
Assume that V |= κ is measurable and 2κ = κ+, and let j : V → N be a

normal ultrapower embedding with cp(j) = κ.
Let Q = Randomκ and P be the Easton product over the inaccessible cardinals

λ < κ of Add(λ+, 1) × Add(λ++, 1).
Force over V with P × Q, and let GP × GQ be generic.

13The existence of uncountable ω1-entangled subsets of R also contradicts MAω1 (see [41]), thus

giving yet another proof of Corollary 5.2.
14This argument actually shows that if κ is atomlessly measurable, then for every λ < κ there is
an ω1-entangled subset of R of size λ.
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As before:

• If j(P) = P × Ptail, then there is G∗ ∈ V , Ptail-generic over N , such that j
lifts to j1 : V [GP] → N [GP][G∗].

• j(Q)/Q is isomorphic to an appropriate random forcing in any intermediate
model between V [GQ] and V1 := V [GQ][GP], inclusive, and c = κ is real-
valued measurable in V1. In fact if H is j(Q)/Q-generic over V1 then, in
V1[H ], j lifts to j2 : V1 → N [GP][G∗][GQ][H ], thus showing RVM(c) in V1, by
Solovay’s Theorem 1.6.

• Similarly, in V [GQ][H ], j lifts to j3 : V [GQ] → N [GQ][H ].
• RV [GQ] = RV [GQ][GP].

In V [GQ], let A ⊂ κ code a well-ordering of R in order type κ.
Let 〈 δα :α < κ 〉 be the increasing enumeration of the inaccessible cardinals

in V below κ. For α < κ, let Gα be the αth component of GP, so Gα is the
product of an Add(δ+

α , 1)-generic and an Add(δ++
α , 1)-generic over V . Let G∗

α be
the Add(δ+

α , 1)-generic, if α ∈ A, and the Add(δ++
α , 1)-generic, if α /∈ A. Finally, let

g =
∏
α<κ

G∗
α.

Notice A is definable from g.
The same argument as in Claim 3.5 shows G∗ and j3(A) suffice to define j2(g)

(and recall G∗ ∈ V and j3(A) ∈ V [GQ][H ]). It follows as in that claim that c = κ
is real-valued measurable in V [GQ][g], and that a lifting of j to j∗ : V [GQ][g] →
N [GQ][H ][j2(g)] definable in V [GQ][g][H ] serves as a witness.

Theorem 6.1 (Woodin). If V = L[µ], then in V [GQ][g], RVM(c) and there is a
∆2

1-well-ordering of R.

Proof. Let V1 = L[µ][GQ][g], so RV1 = RL[µ][GQ] and RVM(c) holds in V1. We
claim that the well-ordering coded by A is Σ2

1 in V1. This we verify by “guessing”
the ground model. What the following claim formalizes is our intuition that any
structure which resembles L[µ] sufficiently close must coincide with L[µ]. This
resemblance we indicate in terms of a covering property.

Definition 6.2. Let N be a transitive structure that models enough set theory. We
say that N satisfies countable covering iff

∀σ ∈ Pω1(N)∃τ ∈ N (σ ⊆ τ and N |= |τ | ≤ ℵ0).

Once again, we use ZFC−ε to denote a sufficiently strong fragment of ZFC,
say (as before), ZFC�Σ200, ZFC with the replacement schema restricted to Σ200

statements. Obviously, much less suffices.
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Claim 6.3. In V1, suppose M is transitive, |M | = c, M |= ZFC−ε + V = L[µ]. Let
κM be the measurable cardinal in the sense of M , and κ = c. Suppose κM ≥ c, M
is iterable and satisfies countable covering. Then Mκ = L[µ]κ.15

The hypothesis of Claim 6.3 requires some expansion. The point of the claim
is that we have identified the ground model (or, better, the part of the ground
model relevant to our argument) in a projective fashion.

See [15] for a careful exposition of iterability at this level and for the necessary
background on the argument to follow. What we refer to as KDJ is just called K
in [15], and L[µ] is called there L[U ]. KDJ is the Dodd-Jensen core model.

Proof. First notice that an initial segment of L[µ] itself satisfies the requirements:
Iterability is clear, and countable covering holds because Q is ccc and P is ω1-
closed.

Assume M satisfies the requirements of the claim. Notice that (provably in
ZFC + “L[µ] exists”), KDJ

κ = L[µ]κ. It follows that Mκ |= ZFC + V = KDJ (ZFC
holds in Mκ because GCH holds in M , so M |= κ is strongly inaccessible). So
Mκ = (KDJ )Mκ = KDJ ∩ Mκ ⊆ KDJ ∩ Vκ = L[µ]κ, where we use [15, Lemma
14.18] to justify the equality (KDJ)Mκ = KDJ ∩ Mκ (namely, KDJ is the union
of all the mice in the sense of [15] if 0� exists, but being a mouse relativizes
downwards).

If Mκ � KDJ
κ , then there is a least sharplike mouse M̄ /∈ Mκ such that

Mκ � L[M̄ ]κ (see [15, Chapter 15]). Notice that KDJ
κ |= L[µ] does not exist,

because κ is a cardinal in V1 (otherwise, in V1, L
[
L[µ]K

DJ
κ

]
would really be a model

L[U ] with U a normal measure in L[U ] on some cardinal λ < κ, contradicting the
minimality of κ in V1. It follows from [15, Chapter 16] that there is a nontrivial
j : Mκ

≺−→ Mκ in L[M̄ ]κ, and this certainly contradicts the countable covering
property of M considering, for example, the first ω terms of the critical sequence
derived from j.

This completes the proof of Claim 6.3. �

We are basically done now: To require iterability of a model M as in Claim
6.3 is a projective requirement; for example, if M |= V = KDJ , iterability of M
states that every countable premouse (that we can code with a real) that embeds
into M in a Σ1-elementary way is iterable (if M is coded by a set of reals, the
existence of this embedding is an assertion about an ω-sequence of reals, coding the
range of the embedding, and about the satisfaction relation between a universal Σ1

formula and the elements of M ; all of this can be expressed in a projective fashion;
see [15, Lemma 8.7] for a proof of the claimed characterization of iterability). The
iterability of a countable premouse is in turn a Π1

2 statement (uniformly in a real

15The notation we use here is ambiguous. For N a model and α an ordinal,

Nα = { x ∈ N : rk (x) < α },
where rk (x) is the set-theoretic rank of x. In particular, L[µ]κ is not the κth-stage in the (classical)
constructible hierarchy of L[µ].
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coding the premouse as a parameter), see [15, Lemma 13.21]. Hence, to define A
in a Σ2

1-way following the approach explained at the end of section 2 it suffices to
notice the following claim, whose proof concludes the proof of Theorem 6.1.

Claim 6.4. In V1 suppose δ̂ < κ and a ⊆ δ̂+ is such that a /∈ L[µ] is Add(δ̂+, 1)-
generic over L[µ]. Then δ̂ is an inaccessible cardinal δβ or its successor, and β ∈ A

iff δ̂ = δβ.

It follows that A can be defined by refering to those cardinals δ̂ for which
there is a set a as above.

Proof. This follows quite easily by what is essentially the decoding argument given
during the proof of Theorem 3.1. �

This completes the proof of Theorem 6.1. �

Notice that essentially the same argument provides models of a Σ2
1-well-

ordering together with RVM(c), as long as the ground model is fine structural,
and the iterability condition for countable mice is projective16.

Following this approach, granting large cardinals, and starting with a defin-
able fine structural model, the construction produces a model of RVM(c) together
with a Σ2

1(Hom∞)-well-ordering of R. Here, Σ2
1(Hom∞) is the pointclass of sets of

reals A such that for some projective formula ψ and some real parameter r, A can
be defined by: For all s ∈ R,

s ∈ A ⇐⇒ ∃B (ψ(s, r, B) and B ∈ Hom∞).

The pointclass Hom∞ consists of all ∞-Homogeneous sets of reals. Under the
background assumption that there are unboundedly many Woodin cardinals (in
V , not necessarily in the fine structural model), it coincides with the pointclass of
all Universally Baire sets of reals. See [39] for definitions, details and references.

7. Real-valued measurability and the Ω-conjecture

This section announces an improvement due to Woodin of the result in section 6.
We include enough definitions to make the statement meaningful.

Recall we have shown inherent difficulties to a straightforward attempt to
obtain (without anti-large cardinal assumptions) extensions of the universe where
c is real-valued measurable and there are ∆2

1-well-orderings of R. The specific
technical difficulty that must be resolved is whether it is possible to devise a
coding of bounded subsets of c by reals. The usual way of obtaining such coding

16If Mκ is the model the corresponding version of Claim 6.3 tries to identify, a fake candidate
would give rise to a club of inaccessible cardinals below the distinguished measurable κ, again
violating covering. Recall that iterability of a fine structural premouse M is in essence a condition
about its countable elementary substructures, and that, in the presence of only finitely many
Woodin cardinals, this condition is a projective requirement. See for example the introduction
to [36].
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is by ensuring that some kind of forcing axiom holds. However, we have shown
that real-valued measurability contradicts even very general schema toward such
forcing axioms. The way this difficulty was dealt with in the previous section
was by circumventing it, by working within a “thin” ground model which could
therefore be identified in a projective fashion in the relevant forcing extension.

Woodin’s idea is to exploit this “thinness” within a broader context. Specif-
ically, instead of trying to establish directly that a ∆2

1-well-ordering of R and
RVM(c) can be added by forcing, he settles for showing the Ω-consistency of this as-
sumption. We proceed now to present a brief summary of Ω-logic, of Ω-consistency,
of its connection with the problem of showing consistency via forcing, and close
with the statement of Woodin’s result and the question of possible generaliza-
tions. The reader may also want to look at [5], in this same volume, where Ω-logic
is studied in some detail and its basic theorems are established.

In [44], Woodin introduces Ω-logic as a strong logic extending first-order logic
(in fact, extending β-logic), and uses it to argue for a negative solution to Cantor’s
continuum problem. His argument would justify the adoption of ¬CH if a particular
conjecture holds. This conjecture would show that Ω-logic is in a sense as strong
as possible for a wide class of statements (including CH). We advise the interested
reader to consult [44] for more details. All the results and definitions presented
here, unless otherwise explicitly stated, are due to Woodin. However, it must be
pointed out that since the appearance of [44] and even [45], the basic definitions
have changed somewhat, see [46]. In particular, the definition of Ω-logic we state
below is purely semantic, and corresponds to what [45] calls Ω∗-logic. This move
requires a slight change in the definition of proofs in Ω-logic, as we will explain.

The concept of strong logic is defined in [45]. We do not need it here, but it
is useful to mention that we are only interested in it with respect to theories (in a
first-order language) extending ZFC. Ω-logic and first-order logic are both examples
of strong logics, at opposite ends of the spectrum, first-order logic being the most
generous strong logic there is, in the sense that it allows as many structures as
possible, and we regard this generosity as a weakness. On the other hand, Ω-logic is
the strongest possible logic, allowing only those structures that pass for acceptable
models of set theory, under reasonable requirements of acceptability. For example,
while first-order logic allows any structure of the form (M,E) as a possible model,
ω-logic only allows those structures that “compute Vω correctly” and β-logic only
allows those structures that are correct about well-foundedness. Ω-logic goes as far
in this direction as possible, subject to natural requirements that we list below.

Recall that if M is a transitive structure, Mα = { x ∈ M : rk (x) < α }, see
also [5, §1.1]. The following is also [5, Definition 1.7].

Definition 7.1 (Ω-logic). Let T ⊇ ZFC and let φ be a sentence. Then

T |=Ω φ

iff for all P and all λ, if V P
λ |= T , then V P

λ |= φ.
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Remark 7.2. According to this definition, an Ω-satisfiable sentence φ, i.e., a sen-
tence φ such that ¬φ is not Ω-valid, is one such that for some P and α, V P

α |=
ZFC + φ, see [5, Definition 3.1]. It is easy to see that if φ is Σ2 and Ω-satisfiable,
then in fact φ is forceable over V , i.e., for some P, V P |= φ. In effect, let φ ≡ ∃xψ(x)
be a Σ2 sentence, where ψ(x) is Π1. Suppose φ is Ω-satisfiable, and let α, P be such
that V P

α |= ZFC+φ. Let u be such that V P
α |= ψ(u) and let ω < κ < α be a cardinal

in V P
α (and therefore in V P), sufficiently large so u ∈ HP

κ . A well-known result of
Levy (see [35]) asserts that whenever λ > ω is a cardinal, Hλ ≺1 V . Relativizing
Levy’s result to V P

α , it follows that HP
κ |= ψ(u). Applying Levy’s result in V P, we

see that V P |= φ, as wanted.

A logic (in the sense of a satisfaction relation between first-order structures
and first-order statements) satisfying the definition of Ω-logic (and, perhaps, being
more restrictive) is said to be generically sound.

An important difference between first-order logic and Ω-logic is that the latter
requires a healthy large cardinal structure on the background universe for certain
absoluteness requirements to hold; this absoluteness is essential for a reasonable
study of Ω-logic. For this section, let us define:

Definition 7.3. By our Base Theory we mean

ZFC + “There is a proper class of Woodin cardinals.”

The following is proven in [5, Theorem 1.8].

Theorem 7.4 (Generic Invariance). Assume our Base Theory. Let T ⊇ ZFC and
let φ be a sentence. Then T |=Ω φ iff for all P, V P |= T |=Ω φ. �

Corresponding to the semantic notion of satisfiability we want to develop a
syntactic counterpart, �Ω. Recall that proofs in first-order logic can be construed
as certain trees. Similarly, for Ω-logic, we develop a notion of certificate that plays
this role.

The certificates in this case are more specialized, and it is better to present
first the sets in terms of which we are to define them, the Universally Baire sets,
which we introduce directly in the way we need them, by what is usually stated
as a corollary of their standard definition. See also [5, §2.1].

Definition 7.5 (Feng, Magidor, Woodin [16]). Let λ be an infinite cardinal. A set
A ⊆ ωω is λ-Universally Baire iff there are λ-absolutely complementing trees for
A, i.e., a pair T, T ∗ of trees on ω × X for some X , such that

1. A = p[T ] and ωω \ A = p[T ∗].
2. 1 �P p[T ] ∪ p[T ∗] = ωω for any forcing P of size at most λ.

A is ∞-Universally Baire or, simply, Universally Baire, iff it is λ-Universally Baire
for all λ.

Notice that if A is λ-Universally Baire, and T, T ∗, P are as above, then 1 �P

p[T ] ∩ p[T ∗] = ∅.
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The Universally Baire sets generalize the Borel sets and have all the usual
regularity properties.

Under reasonable large cardinal assumptions, the pointclass of Universally
Baire sets is quite closed. For example (see [16] for the case A = R or [34] for the
general case):

Fact 7.6. Assume our Base Theory. Suppose A is Universally Baire. Then every
set of reals in L(A, R) is Universally Baire. �

There are somewhat cleaner ways of stating this fact. For example, since our
Base Theory grants that every set has a sharp, Fact 7.6 is equivalent to (see [34]):

Fact 7.7. Assume our Base Theory. Suppose A is Universally Baire. Then A� is
Universally Baire. �

Given such a set A, it makes sense to talk about its interpretation in exten-
sions of the universe, in what generalizes the idea of Borel codes for Borel sets.

Definition 7.8. Let A be Universally Baire. Let P be a forcing notion, and let G
be P-generic over V . Then the interpretation AG of A in V [G] is

AG =
⋃

{ p[T ] :T ∈ V and V |= A = p[T ] }.

This is the natural notion we would expect: If T, T ∗ are λ-complementing
trees such that p[T ] = A, if |P| ≤ λ and G is P-generic over V , then V [G] |= AG =
p[T ].17

The certificates for Ω-logic are issued in terms of Universally Baire sets, and
thus we arrive at the concept of A-closed structures. See also [5, §2.2].

Definition 7.9. Let A ⊆ ωω be Universally Baire. A transitive set M is A-closed
iff for all P ∈ M and all P-terms τ ∈ M ,

{ p ∈ P :V |= p � τ ∈ AG } ∈ M.

Remark 7.10. In practice, countable transitive A-closed models M are those ad-
mitting a pair of “absolutely complementing with respect to M” trees T, T ∗ ∈ M
such that the interpretation of A (which needs not be in M) would be in forcing
extensions of M by forcing notions in M given by the projection of T , and such
that in V , p[T ] ⊆ A and p[T ∗] ⊆ R \A. Notice that M -generics for forcing notions
in M exist in V , since M is countable.

Even though the official definition restricts the A-closed structures from the
beginning to transitive sets, it may be helpful to point out that β-logic can be
characterized in terms of A-closure: An ω-model (M,E) |= ZFC is well founded iff,

17A word of warning is in order: Suppose A = { r ∈ R :ϕ(r) } is Universally Baire, where ϕ is,
say, Σ1

3. It does not follow that

AG = { r ∈ RV [G] :ϕ(r) }. (∗)
Universally Baire sets figure prominently in generic absoluteness arguments but, in addition,
equalities like (∗) need to be ensured. See for example [39].
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under the proper interpretation, it is A-closed for each Π1
1-set A, see [5, Theorem

2.23] for a proof.

The following is [44, Lemma 10.143], see [5, Proposition 2.9] for a proof.

Theorem 7.11 (Woodin). Let M |= ZFC be transitive, and let A be Universally
Baire. Then the following are equivalent:

1. M is A-closed.
2. Suppose P ∈ M and G is P-generic over V . Then

V [G] |= AG ∩M [G] ∈ M [G]. �

With the concept of A-closed structures at hand, we are ready to define prov-
ability in Ω-logic. That our discussion is not vacuous is the content of the following
fact; in practice more delicate results are required. See [34, §4] for techniques that
can easily be adapted to prove strengthened versions of Fact 7.12.

Fact 7.12. Assume our Base Theory. Let A be a Universally Baire set. Then there
are A-closed countable transitive models of ZFC. �

See [5, §2.4] for basic results about the following notion.

Definition 7.13 (�Ω). Let T ⊇ ZFC be a theory, and let φ be a sentence. Then

T �Ω φ

iff there exists a Universally Baire set A such that
1. L(A, R) |= AD+.
2. A� exists and is Universally Baire.
3. Whenever M is a countable, transitive, A-closed model of ZFC and α ∈

ORDM is such that Mα |= T , then Mα |= φ.

See [44, Chapter 10] or [47] for an introduction to AD+.
In [44], the notion now called |=Ω was denoted �Ω∗ and called Ω∗-logic. Ω-logic

was defined by a slight variation of Definition 7.13, namely instead of requiring
that if Mα |= T then Mα |= φ for initial segments Mα of M , this was required of M
itself. The change allows for a cleaner version of the Ω-conjecture, see Conjecture
7.17. Originally, the Ω-conjecture needed to be stated in terms of Π2 statements.
The other difference between the definition given here and the one in [44] is due to
the fact that Definition 7.13 is stated in ZFC and not in our Base Theory. Under
our Base Theory, assumptions 1 and 2 hold automatically. These assumptions are
what is required to prove the existence of appropriate A-closed structures, see [34].

One of the nicest features of �Ω is that it does not depend on the particular
universe where it is considered, at least if we restrict our attention to possible
generic extensions. This is the content of [44, Theorem 10.146], see [5, Theorem
2.35] for a proof.

Theorem 7.14 (Generic Invariance). Assume our Base Theory. Let T ⊇ ZFC and
let φ be a sentence. Then T �Ω φ iff for all P, V P |= T �Ω φ. �
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See [5, Theorem 3.3] for a proof of the following under the additional assump-
tion of the existence of a proper class of strongly inaccessible cardinals.

Theorem 7.15 (Generic Soundness). Let T ⊇ ZFC and let φ be a sentence. Suppose
T �Ω φ. Then T |=Ω φ. �

Remark 7.16. The previous definition of �Ω required the background assumption
of our Base Theory in order for Theorem 7.15 to hold. Notice that with the new
definition it is stated as a ZFC result.

The Ω-conjecture is the statement that �Ω is the notion of provability asso-
ciated to |=Ω in the sense that the completeness theorem for Ω-logic holds. See [5,
§3] for an interesting discussion of this conjecture.

Conjecture 7.17 (Ω-Conjecture). Assume our Base Theory and let φ be a sentence.
Then ZFC |=Ω φ iff ZFC�Ω φ.

Woodin has shown that the Ω-conjecture is true unless (in a precise sense)
there are large cardinal hypothesis implying a strong failure of iterability, see [44]
and [45].

Definition 7.18 (Ω-consistency). Assume our Base Theory. Let T ⊇ ZFC and let φ
be a sentence. Then φ is Ω-consistent relative to T (and if T = ZFC, we just say φ
is Ω-consistent) iff for any Universally Baire set A there is an A-closed countable
transitive M |= T + φ.

Hence, at least as far as we can see nowadays, in order to prove that a proper
class model of a Σ2-sentence φ can be achieved (from large cardinals) by forcing,
it suffices to show that for any Universally Baire set A, φ holds in an appropriate
A-closed model M of ZFC. The intention of this comment is that it is not the same
to prove that a sentence φ is forceable from an inner model than from the ground
model itself. After all, φ may hold in forcing extensions of an inner model because
that model is not sufficiently correct. For a trivial example, L admits a projective
well-ordering of the reals, but such well-orderings are impossible in the presence
of mild large cardinals. However, if the Ω-conjecture holds, and φ is Ω-consistent,
then in fact φ can be forced over V .

Notice that any statement of the form ∃α (Vα |= φ), where φ is a sentence,
is Σ2, and any statement of the form ∀α (Vα |= φ), for φ a sentence, is Π2. The
following follows immediately:

Fact 7.19. The statement “RVM(c)+ There is a ∆2
1-well-ordering of R” can be ren-

dered in a ∆2-way. �

The reader should appreciate by now how powerful the Ω-conjecture is, since
the witnesses to Ω-consistency of a sentence φ can be “fine structural-like” models,
their fine structural features may be used in essential ways to establish the validity
of φ, and nonetheless we can conclude that φ can be forced over the universe,
without the need of any fine structural of anti-large cardinal requirements.
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Since we do not know how to force a ∆2
1-well-ordering of the reals together

with RVM(c), unless we have some nice control over the ground model itself, it
was natural to attempt a proof of the Ω-consistency of this assumption. Woodin
has succeeded in this attempt, and we close this section with his result and a few
comments.

Theorem 7.20 (Woodin). Assume our Base Theory. Then it is Ω-consistent that
c is real-valued measurable and there is a Σ2

1-well-ordering of R. �

This result is proved in [47]. The idea is to use the large cardinal assump-
tion to produce, given a Universally Baire set A, A-closed and sufficiently “fine
structure-like” inner models of strong versions18 of AD+ over which forcing with
Qmax produces ZFC-models with a distinguished measurable cardinal. The measur-
able is used to produce a further extension, by forcing as in section 6. This provides
us, combined with the fine structural features of the ground model, with an ap-
propriate covering argument that can be used in place of Claim 6.3 to correctly
identify enough of HOD of the ground model to obtain the desired Σ2

1-definition.
The ground model can in fact be chosen so the forcing extension itself is A-closed,
and this gives the result. The covering argument rests on factoring properties of
the generic embeddings derived from forcing with the nonstationary ideal, using
the features that Qmax provides.

It follows immediately that granting large cardinals, if the Ω-conjecture holds
then the conclusion of Theorem 7.20 can actually be forced. The following, how-
ever, remains open (from any large cardinal assumptions).

Question 7.21. Assume κ is measurable and GCH holds. Is there a forcing extension
where κ = c is real-valued measurable, and there is a ∆2

1-well-ordering of R?

8. Real-valued huge cardinals

The result of this section serves a two-fold goal. It shows that RVM(c) and a Σ2
1,

or even Σ2
n-well-ordering of R for some n < ω, cannot be obtained for free. It also

shows that there are limits to how far the techniques of this paper can generalize.

Definition 8.1. A cardinal κ is real-valued huge iff there is λ ≥ ω1 such that in
V Randomλ there exists an elementary embedding j : V

≺−→ N with cp(j) = κ and
such that j(κ)N ⊆ N .

The following is clear:

Lemma 8.2. If κ is huge, then V Randomκ |= κ = c is real-valued huge.

18These models have the form N = LΓ(R, µ), where µ is the restriction to N of some normal
measure ν on some cardinal κ, µ = ν ∩N ∈ N , and Γ is a particular closure operator which also
plays the role of the tree for Σ2

1 inside the model.
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Proof. Let j : V → M in V witness hugeness of κ, so j(κ)M ⊆ M and cp(j) = κ.
Set Q = Randomκ. Let G be Q-generic over V , and let H be j(Q)/Q-generic over
V [G]. By Theorem 1.34, we just need to verify that in V [G][H ], j lifts to

j∗ : V [G] → M [G][H ]

and that V [G][H ] |= j(κ)M [G][H ] ⊆ M [G][H ]. As usual, the lifting j∗ is given by
j∗(τG) = j(τ)G�H . This is well defined and elementary.

Given a sequence of names �τ = 〈 τα :α < j(κ) 〉 with each τ a j(Q)-name in
M , the whole sequence �τ belongs to M and, therefore, 〈 (τα)G�H :α < j(κ) 〉 ∈
M [G][H ]. From this the result follows. �

Having shown the consistency of real-valued hugeness of the continuum, we
now point out the following observation due to Woodin:

Fact 8.3 (Woodin). Suppose c is real-valued huge. Then there are no third-order
definable well-orderings of the reals.

Proof. The same argument as for L(R) in Theorem 2.5 works:
Towards a contradiction, let ϕ(x, y, z) be a third-order formula in the lan-

guage of arithmetic, and let t ∈ R be such that for some well-ordering < of R,
ϕ(r, s, t) holds of reals r, s iff r < s.

Let λ and G a Randomλ-generic over V be such that in V [G] there is an
embedding j : V → N with cp(j) = cV and j(cV )N ⊆ N . Then P(R)V [G] ⊆ N ,
since |R| = j(cV ) holds in N (and RN = RV [G], since ωN ⊆ N .) But this means
that third-order statements in the language of arithmetic, with parameters from
N , are absolute between N and V [G].

We are done, because by elementarity ϕ(·, ·, t) would be a third-order defi-
nition of a well-ordering of the reals in V [G], but this is impossible by Corollary
2.2. �

Remark 8.4. Notice that what the proof actually shows is that if c is real-valued
huge and λ is as in Definition 8.1, then V ≡Σ

∼
2
ω

V Randomλ , where boldface indicates

that real parameters from V are allowed.

The argument of Theorem 3.1 breaks down very early when trying to adapt
it to the case where κ is huge. For example, the existence of the N -generic object
we called G∗ cannot be ensured due to the strong closure of N .

Remark 8.4 suggests the natural question of whether generic invariance of
Σ2

ω with respect to “c is real-valued huge” holds. This seems somewhat delicate,
since there does not seem to be a natural counterpart to Solovay’s Fact 1.27 for
preservation of real-valued hugeness. The hypothesis is by no means intended to
be optimal. For example, it is not clear whether the natural real-valued version of
P2(κ)-measurability of κ for κ = c suffices to rule out the existence of third-order
definable well-orderings of R.
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As expected, real-valued hugeness is a serious large cardinal assumption,
strictly stronger than real-valued measurability. Here we content ourselves with
some easy observations and a remark:

Fact 8.5. If κ is real-valued huge, then there are weakly inaccessible cardinals larger
than κ.

Proof. Let λ be as in Definition 8.1, and in V Randomλ , let j : V → N be the
witnessing embedding. Then N |= j(κ) is real-valued measurable, so in particular
N |= j(κ) is weakly inaccessible.

But V [G] |= j(κ)N ⊆ N , so j(κ) is weakly inaccessible in V [G], and therefore
in V .

As usual, the proof actually shows that there are fixed points of the weakly
Mahlo hierarchy (see [26, after Proposition 1.1]), etc., above κ. �

Theorem 8.6. If κ ≤ c is real-valued huge, then the real-valued measurable cardinals
are unbounded below κ. In fact, for a witnessing probability ν,

ν({α < κ :RVM(α) }) = 1.

Proof. As before, let λ be as in Definition 8.1. Let ϕ : Randomλ → [0, 1] be the
‘probability measure’ associated to Randomλ, fix a Randomλ-generic G over V and,
in V [G], let j : V → N witness real-valued hugeness of κ.

By Fact 1.27, RVM(κ) holds in V [G]. Let ν̂ : P(κ) → [0, 1] be a witness.
Notice that [0, 1] ∈ N . Since in V [G], j(κ)N ⊆ N and |P(κ)| = 2κ ≤ j(κ), then in
particular ν̂ ∈ N . Thus, N |= RVM(κ).

Since G was arbitrary, ϕ&'&'κ ∈ j̇({α :RVM(α) })()() = 1, where j̇ denotes a term
for an embedding witnessing real-valued hugeness of κ.

In V , let ν : P(κ) → [0, 1] be defined as usual by ν(A) = ϕ&'&'κ ∈ j̇(A)()(). Then
ν is as required.

As usual, this proof actually gives that κ is limit of real-valued measurable
cardinals that also concentrate on real-valued measurable cardinals that concen-
trate on real-valued measurable cardinals, etc. �

Real-valued huge cardinals imply the existence of inner models for Woodin
cardinals. In the presence of measurable cardinals this is an immediate consequence
of the following result of Steel. It appears as [40, Theorem 7.1] under the stronger
assumption that Ω is measurable.

Theorem 8.7 (Steel). Suppose V �
Ω exists, and let G be P-generic over V for some

P ∈ VΩ. Suppose that in V [G] there is a transitive class M and an elementary
embedding

j : V → M ⊆ V [G]
with cp(j) = κ and such that V [G] |= <j(κ)M ⊆ M . Then the Kc-construction
reaches a non-1-small level19. �
19I.e., M�

1, the sharp for a proper class fine structural inner model with a Woodin cardinal, exists.
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In fact, much more follows from this hypothesis. For example, it is straight-
forward to improve the argument leading to Theorem 8.6 to a proof of the fact that
there is a ‘probability measure’ ν : P(c) → [0, 1] such that ν({α :α is real-valued
almost huge }) = 1. Here, a cardinal κ is called real-valued almost huge iff there is
a λ ≥ ω1 such that in V Randomλ there is an embedding j : V → N with cp(j) = κ
and such that V Randomλ |= <j(κ)N ⊆ N .

Using his technique of the core model induction, Woodin has shown:

Theorem 8.8 (Woodin). If there is a real-valued almost huge cardinal, then
ADL(R∪{R	}) holds. �

For more on real-valued huge cardinals and a strengthening of the above
result, see [12].

Remark 8.9. Anti-definability results can also be achieved by fine structural argu-
ments starting with V = L[µ].
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