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The Association for Symbolic Logic publishes analytical reviews of selected books and
articles in the field of symbolic logic. The reviews were published in The Journal of Symbolic
Logic from the founding of the JOURNAL in 1936 until the end of 1999. The Association
moved the reviews to this BULLETIN, beginning in 2000.

The Reviews Section is edited by Alasdair Urquhart (Managing Editor), Steve Awodey,
John Baldwin, Lev Beklemishev, Mirna Dzamonja, David Evans, Erich Grédel, Denis
Hirschfeldt, Roger Maddux, Luke Ong, Grigori Mints, Volker Peckhaus, and Stawomir
Solecki. Authors and publishers are requested to send, for review, copies of books to 4SL,
Box 742, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA.

In a review, a reference “JSL XLIII 148.” for example, refers either to the publication
reviewed on page 148 of volume 43 of the JOURNAL, or to the review itself (which contains
full bibliographical information for the reviewed publication). Analogously, a reference
“BSL VII 376" refers to the review beginning on page 376 in volume 7 of this BULLETIN, or
to the publication there reviewed. “JSL LV 347" refers to one of the reviews or one of the
publications reviewed or listed on page 347 of volume 55 of the JOURNAL, with reliance on
the context to show which one is meant. The reference “JSL LIII 318(3)” is to the third item
on page 318 of volume 53 of the JOURNAL, that is, to van Heijenoort’s Frege and vagueness,
and “JSL LX 684(8)” refers to the eighth item on page 684 of volume 60 of the JOURNAL,
that is, to Tarski’s Truth and proof.

References such as 495 or 2801 are to entries so numbered in A bibliography of symbolic
logic (the JOURNAL, vol. 1, pp. 121-218).

JouN Norrt. Logics. Wadsworth, 1997, xii + 468 pp.

Classical logic has been the standard fare for introductory courses in logic at universities
now for over 50 years. But nonclassical logics have come to be of interest to mathematicians
and philosophers for a foundational comparison to classical logic and for their applications.
It now seems intellectually dishonest to present classical logic as the settled sole formalization
of reasoning in an introductory course on logic. This book is meant to be used to give a
broader introduction to logic.

Logics is valuable throughout in connecting logic to reasoning. Nolt begins with good
discussions of arguments, validity, and much of the background necessary to the study of
formal logic. He then turns to a presentation of classical logic up through the completeness
theorem for predicate logic.

Nolt’s semantics for predicate logic are new. Rather than interpreting variables as in
the Tarskian approach, or varying over different interpretations of names as in Mates’s
approach or Shoenfield’s approach, he expands the valuations, that is, the interpretation
of the predicates and names, by considering potential names, evaluating formulas by using
such potential names for objects. But no fixed supply of such names is given and the formal
language is never expanded to include them, so that the potential names are in a limbo
between syntax and semantics. This flaw makes his semantics unintelligible.

For his inference systems he uses natural deduction. He devotes much space to extremely
long syntactic analyses, both for examples and for completeness theorems. Oddly, he doesn’t
prove a deduction theorem or a strong completeness theorem for any of the logics he considers.
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After classical logic Nolt turns to extensions of classical logic: modal logics, deontic
and tense logics, and second-order logic. Then he presents nonclassical logics: free logics,
multi-valued logics, supervaluations, infinite-valued and fuzzy logics, intuitionistic logics,
relevance logics, and nonmonotonic logics.

Nolt’s motivation of the various logics and their use in analyses of philosophical issues
is often good and in the case of the modal logics (including deontic and tense logics) of
considerable interest even to those long familiar with the systems. However, in the discussion
of modal systems he does not consider the principal criticism of them as involving use-
mention confusions, which can be highlighted with an analysis of deduction theorems for
them. In the discussion of higher-order logics he misses the main philosophical issue of why
we should identify properties and relations with sets and what we mean by all subsets and all
predicates.

For the semantics of most of these logics Nolt introduces the predicate interpretation
without separately considering the propositional analysis. This is hard to follow, particularly
when there are many controversial choices to be made for the quantifiers that obscure the
analysis of the propositional connectives. Only for some of the logics that he classifies as
nonclassical does he consider just the propositional logic, and those presentations are more
accessible.

It is not clear what audience Nolt has in mind for this text. The density of the material
and the depth of the philosophical discussions suggest that this book would be suitable only
for upper-division undergraduates in philosophy. The complexity of the predicate semantics
for modal logics in particular seems at a level accessible only for advanced students of logic.

Overall, this text does not appear to be suitable for a first introduction to logic. But the
motivations of many of the logics make it a useful reference for faculty, whether preparing
such a course or engaging in research.

RICHARD L. EPSTEIN

Advanced Reasoning Forum, P. O. Box 635, Socorro, NM 87801, USA.
rle@AdvancedReasoningForum.org.

BoB HALE AND CRISPIN WRIGHT. The reason’s proper study: Essays toward a neo-Fregean
philosophy of mathematics. Oxford University Press, New York. 2001, 472 pp.

For most of his career Frege believed that (i) arithmetic is a body of truths concerned with
independently existing objects and that (ii) arithmetic is derivable from logical principles
and definitions alone. This is what Frege meant by the claim that arithmetic is analytic.
Moreover, he offered an original defense of this claim. First he argued that ascriptions of
number, which for Frege are ascriptions of a number to a concept, are governed by Hume’s
principle:

HuME’s PRINCIPLE: The number of F = the number of G if and only if F and G
are in one-to-one correspondence.

For all its merits, Hume’s principle seems unable to settle mixed identity questions of the
form “The number of F = ¢”, where ¢ is a singular term purported to refer to an object of
an ostensibly different sort. In the face of what has come to be known as the Julius Caesar
problem, Frege sought to provide an explicit definition of numerical terms of the form “the
number of F”:

The number of F is the extension of the concept being equinumerous with F .

This definition takes place against the background of Frege’s theory of extensions which
would eventually emerge as second-order logic supplemented with Basic Law V:

Basic Law V: The extension of F = the extension of G if and only if F andG
are coextensive.
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Frege’s explicit definition of number had Hume’s principle as an immediate consequence.
In Grundlagen, Frege outlined a derivation of ordinary arithmetic from his definition of
number. Unfortunately, by the time the two volumes of Frege’s Grundgesetze appeared in
print with all the technical details of the derivation, Russell had shown Basic Law V to be
inconsistent. Frege tried to modify Basic Law V to avoid the contradiction but to no avail.
Faced with Russell’s discovery, he later abandoned his life’s project to ground arithmetic on
logical principles and definitions.

Bob Hale and Crispin Wright have led a recent effort to revive Frege’s ambition to establish
the analyticity of arithmetic. Neo-Fregeanism, as this effort is now known, is a renewed
defense of Frege’s two main tenets, but with a qualified understanding of the analyticity of
arithmetic. Where Hale and Wright differ from Frege is in their assessment of the prospects for
such a defense. Frege’s mistake, they suggest, had been to seek an explicit definition of number
in the face of the Julius Caesar problem. Instead, they propose to make do with Hume’s
principle alone as a definitional basis for arithmetic. Two technical observations provide
some grounds for optimism. The first observation is that Hume’s principle is consistent
if second-order arithmetic is. Since the consistency of this theory seems beyond serious
question, this observation has been taken to show the consistency of Hume’s principle itself.
The second observation is that, in the context of second-order logic, Hume’s principle does
indeed suffice for a derivation of all the Dedekind-Peano axioms. This is what, following a
suggestion of George Boolos, has come to be known as Frege’s Theorem.

The question remains whether Frege’s Theorem may be reasonably taken to underwrite a
vindication of the analyticity of arithmetic. The present volume collects together 15 papers
by Bob Hale and Crispin Wright which, at the time of publication, represented their best
effort in that direction. That effort had taken place in a span of several years and all but one
of the papers in the collection had appeared in print before the publication of this volume.
The book includes an introduction and a postcript written especially for the occasion. The
introduction surveys the targets of the neo-Fregean program and explains how the different
papers in the volume contribute to the fulfillment of its philosophical obligations. The
postcript, in contrast, provides a useful summary of 18 problems still facing the neo-Fregean
program and sketches directions for further research. The topics addressed in the papers
reflect the breadth of ontological and epistemological questions raised by the neo-Fregean
philosophy of arithmetic. The papers are divided into five main parts.

Part I (Ontology and Abstraction Principles) consists of five papers largely centered on
two challenges. One has to do with the neo-Fregean conception of object as just what a
singular term refers to. The central challenge is to be able to identify expressions as singular
terms independently of the assumption that they refer or purport to refer to objects. Another
challenge for the neo-Fregean is related to Frege’s remark in Grundlagen §64 that the two
sides of instances of abstraction principles in general and Hume’s principle in particular carve
a single content in two different ways. A quick glance at an instance of Hume’s principle
suggests that the left and right hand side of the biconditional should diverge in their truth
conditions in view of the fact that one side is a statement of numerical identity while the other
is a statement of one-one correspondence. The challenge is to motivate an understanding of
truth condition on which the two sides of an instance of Hume’s principle may reasonably be
said to have identical truth conditions.

Part II (Responses to Critics) consists of four papers written mostly in response to criti-
cisms by Hartry Field and Michael Dummett. One theme in common with the first part is
Hartry’s Field objection based in the apparent divergence in truth conditions between the
two sides of instances of Hume’s principle. Field had urged the rejection of that principle
in favor of a conditionalized version of the form: “If numbers exist, then the number of
F = the number of G if and only if they are in one-to-one correspondence.” Other concerns
are more general and not specific to the neo-Fregean program. One of the papers by the first
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author discusses Field’s generalization of Benacerraf’s classic epistemological challenge for
platonism. Two more papers react to Michael Dummett’s criticisms of Frege’s philosophy of
arithmetic and the more recent neo-Fregean revival. Some of Dummett’s objections center
on the viability of a neo-Fregean vindication of Frege’s platonism and have to do with what
he thinks is the inability of Hume’s principle to secure a robust reference for the numerical
terms or to counter ontological reductionism. A related objection concerns the viability of
a neo-Fregean solution of the Julius Caesar problem. Discussion of what is probably Dum-
mett’s most serious objection is postponed to Part III, where Wright considers the question
of whether the neo-Fregean project is marred by the impredicativity of Hume’s principle.

Part III (On Hume’s Principle) consists of four papers written by Crispin Wright on
Hume’s principle. This part is largely centered on two themes. One is the impredicativity of
abstraction of Hume’s principle, which Michael Dummett has found objectionable as a sort
of vicious circularity that threatens the prospects of both Frege’s philosophy of arithmetic
and its neo-Fregean revival. Wright argues for the legitimacy of impredicative abstraction
principles in general and denies that impredicativity places a serious obstacle for the neo-
Fregean defense of the analyticity of arithmetic. The other theme of this part has to do with
a critical obligation for the neo-Fregean, who must provide a reasonable understanding of
analyticity on which Hume’s principle may appropriately be called analytic. The neo-Fregean
answer is that Hume’s principle serves as an implicit definition of the concept of number.
The task of course is to elaborate and defend the neo-Fregean account of implicit definition
on which Hume’s principle indeed qualifies as an implicit definition.

Part IV (On the Differentiation of Abstracts) consists of a single joint effort to survey what
they seem to the authors the best lines of response to the Julius Caesar problem, which is
what led Frege to seek an explicit definition of number in the first place. If Hume’s principle
is to succeed as a complete explanation of the concept of number, then one might expect it to
settle the truth conditions of mixed identity statements of the form “the number of F = ¢”,
where “g” is a term explicitly purported to denote an object of an ostensibly different sort.
Hale and Wright hope that the criterion of identity associated with the sortal concept number
as introduced by Hume’s principle imposes some restrictions on the extension of the concept
of number that suffice, for example, to exclude the possibility that a number be identical with
an object that falls under a sortal concept governed by a different criterion of identity.

Part V (Beyond Number Theory) consists of an attempt by Bob Hale to extend the neo-
Fregean program beyond arithmetic to cover real analysis. The neo-Fregean ambition is to
identify further abstraction principles with a claim to provide a foundation for other branches
of ordinary mathematics and perhaps even set theory. In the specific case of analysis, Hale
identifies and studies an abstraction principle which generates real numbers as ratios of
quantities.

A few years have now elapsed since the publication of Hale and Wright’s volume and
much work has been done to address some of the problems they raise in their postcript. The
problems listed in the author’s postcript are centered on three main fronts: (a) Abstraction
principles and their credentials to serve as a foundation for ordinary mathematics, (b) the
legitimacy of higher-order logic, and (c) the prospects for an extension of the neo-Fregean
program for the rest of mathematics. Two problems of the first sort still strike this reviewer
as particularly challenging. One is the question of what justifies the special epistemological
status of philosophically virtuous abstraction principles as opposed to others. What confers
on Hume’s principle, for example, a privileged epistemological and ontological status as
a foundation of arithmetic? Not only do we seem to lack an explanation of why some
abstraction principles enjoy a more privileged epistemological status than others, we seem to
have little reason to expect a principled and informative distinction between philosophically
virtuous abstraction principles and all of the rest. Michael Dummett once raised the objection
that next to what are supposed to be philosophically virtuous abstraction principles like
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Hume’s principle lie inconsistent principles like Basic Law V. Unfortunately, a series of
refinements of Dummett’s bad company objection would seem to suggest that there is little
hope to set philosophical virtuous abstraction principles apart from less virtuous principles.

More progress has been achieved on some of the other fronts. Hale’s approach to real
analysis has been recently supplemented by an alternative neo-Fregean account of the real
numbers based on Dedekind’s construction of the real numbers as Dedekind cuts. Crispin
Wright and Stewart Shapiro, for example, have explored this route in which successive
abstraction principles eventually take one from cardinals to Dedekind cuts which are then
identified with real numbers. The prospects for a neo-Fregean account of set theory are a
different matter entirely. Very briefly, the challenge is to identify an acceptable abstraction
principle that might serve as a basis for a well-motivated neo-Fregean set theory from which
to recover a sufficient amount of set theory to deserve the name.

GABRIEL UZQUIANO

Department of Philosophy, Ohio State University, 230 N. Oval Mall, Columbus, OH

43210, USA. uzquiano-cruz.l@osu.edu.

GRAHAM PRIEST. An introduction to non-classical logic.  Cambridge University Press,
2001, xxi + 242 pp.

The book offers a systematic presentation of non-classical propositional logics (“classical”
logic understood just as the standard propositional logic as commonly taught). For most of
the logics presented, the possible world semantics is used and the proof systems are based on
tableaux. Each chapter dealing with a logic ends with a section with proofs of theorems, a
historical survey and suggestions for further reading. The notion of a formula is standard,
with one remarkable feature that the author never uses the name “implication” and instead
calls the connective “conditional”. In each chapter there is a shorter or longer discussion
on how the connective of conditional corresponds (and in fact does not correspond) to the
intuitive notion of the conditional “if — then” of the natural language, understood as relating
some proposition (the consequent) to some other proposition (the antecedent) on which,
in some sense, it depends (p. 9). This seems to be a reasonable philosophical question (as
a part of logical analysis of natural language), but one can ask if this is a logical question.
The author explicitly says (p. 1) that “the point of logic is to give an account of the notion
of validity: what follows from what”. But from this point of view, implication is, in each
reasonable logic, a well defined connective and modus ponens just expresses its behavior
w.r.t. validity. The paradoxes of implication just show that implication does not formalize
the intuitive notion of conditional, which is interesting (more or less) but is not a fault.

The chapters are as follows: Chapter 1 — Classical logic and material conditional. Formu-
las, trees and tableau rules for classical logic are defined: the discussion on paradoxes starts.
Chapter 2 — Basic modal logic. Possible world semantics is defined and the system K (after
“Kripke”) is introduced (no restriction to the accessibility relation). Philosophical discussion
on the meaning of possible worlds—three approaches discussed (realism, actualism, meinon-
gianism). And of course tableau rules, completeness proof, as in all chapters (not stressed
below). Chapter 3 — Normal modal logics. These are K and stronger logics putting some
restrictions to the accessibility relation, in particular the famous S5 is presented. There is a
discussion on the notion of necessity. Chapter 4 — Non-normal worlds, strict conditionals. Each
structure of possible worlds contains a subset of “normal” possible worlds; in a non-normal
world, each formula is possible and no formula is necessary. Lewis’s S2 and S3 are introduced
and Lewis’s notion of strict conditional (defined as O(4 D B)) is discussed. Chapter 5 —
Conditional logics. There is a new connective > and the possible world structure has a system
{R4 | A aformula} of relations, i.e., each formula has its accessibility relation. 4 > B is true
in a world w if B is true in each world R 4-accessible from w. Chapter 6 — Intuitionistic logic.
Usual possible world semantics for this logic presented (R reflexive and transitive, evaluation
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of formulas in possible worlds is hereditary: if p is true in w then it is true in each world
accessible from w). The intuitionist negation is in fact -4 and the intuitionist implication
(conditional) is in fact the strict conditional. Even here the author discusses paradoxes of
the conditional. Chapter 7 — Many-valued logic. After a general explanation of what many
valued logics are only the three-valued logics by Kleene and by Lukasiewicz are presented and
discussed. as well the variant of Kleene logic with the two-element set of designated values
(values different from 0). There is an extensive discussion on the third value and its meaning
as “neither true nor false” or, alternatively, as “both true and false” (and the corresponding
paradoxes). Chapter 8 — First degree entailment. This is apparently a rather unknown logic,
with two truth values but the evaluation of propositional variables is not a function assigning
to each variable a truth value but a relation between variables and truth values (thus a variable
may be related to no value, to the value 0, the value 1 or to two values—four possibilities).
The relation extends to formulas built by conjunction, disjunction and negation using natural
rules. This logic is “the core of a family of relevant logics” (p. 159) and is representable as
a four-valued logic. Chapters 9 and 10 deal with relevant logics. In Chapter 9, the logic
of Chapter 8 is extended by a variant of the strict conditional and in Chapter 10 there is a
ternary relation used to formulate truth conditions for —. We omit any details.

Chapter 11 — Fuzzy logic. Here we shall be more detailed and critical. The author
understands (correctly) fuzzy logic as a logic motivated by vagueness (Sorites paradox).
He presents the infinitely valued Lukasiewicz logic and its axioms; its completeness (with
respect to 1 as the designated value) is only stated, with reference to literature. Then he
suggests that for any ¢ > 0, the set {x | ¢ < x < 1} can be taken as the set of designated
values but then modus ponens fails. He finds this counter-intuitive. But it is not; if one
makes consequences from not fully true assumptions, the degree of truth may decrease.
This was well elaborated already in the late seventies in the pioneering series of papers by
Pavelka (Pavelka J.: On Fuzzy Logic I, II, III, Zeitschrift fiir Mathematische Logik und
Grundlagen der Mathematik 25 (1979), 45-52, 119-134, 447-464) who was one of first
authors relating fuzzy logic to residuated lattices. The weighted modus ponens says that if 4
is at least r-true and 4 D B is at least s-true then B is at least r * s-true where * is so-called
Lukasiewicz t-norm x * y = max(0, x + y — 1) (the truth function of strong Lukasiewicz
conjunction) whose residuum is Lukasiewicz implication. One can consider evaluated proofs
defined in the obvious way and get a variant of completeness. Moreover: The monograph
Hajek P.: Metamathematics of fuzzy logic (Kluwer 1998) became the beginning of intensive
development of t-norm based fuzzy logics. Lukasiewicz logic is one of them, but there are
others, notably Godel fuzzy logic. which is a logic satisfying modus ponens for Priest’s sets of
designated truth values mentioned above. These logics have double semantics, the standard
semantics with the real unit interval as the set of truth degrees and the general semantics
given by so-called BL-algebras (residuated lattices satisfying some additional axioms). It is
a pity that Priest’s book (which appeared in 2001 and possibly was finished earlier) does not
mention this development and thus is, with respect to fuzzy logic, not very informative.

At the end of the preface the author says: “If one waited for perfection one would wait
forever”. His book is, in spite of the criticism just presented, a very valuable source in many
directions. The reviewer met recently Professor Priest and told him the criticism; he has
replied that a new edition of the book is in preparation and the chapter on fuzzy logic will be
modified accordingly. Then several works should be taken into consideration; among them,
besides those mentioned above, the following two: Gottwald S.: Treatise on Many-Valued
Logics. Studies in Logic and Computation vol. 9, Research Studies Press 2001; Novdk V,
Perfilieva 1., Mockor J.: Mathematical Principles of Fuzzy Logic. Kluwer 2000.

PETR HAJEK

Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod
vodarenskou vézi 2, 182 07 Prague, Czech Republic. hajek@cs.cas.cz.
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Farouz KAMAREDDINE, TWAN LAAN, and RoOB NEDERPELT. A modern perspective on type
theory—From its origins until today.  Applied Logic Series, vol. 29. Kluwer Academic
Publishers, Dordrecht, 2004, xiv + 357 pp.

This book is a monograph on the historic role of type theory in the epistemological
foundations of mathematics. As such it covers important aspects of type theory, but by no
means all of type theory. For example, the role type theory plays in programming languages
is not adressed. This is not meant as criticism of the book under review, but as mild criticism
of its title. For a large part it is a consequence of the size of the book (xiv + 357 pp.). A more
comprehensive treatment of type theory is to be expected from the forthcoming volume(s)
edited by Barendregt. in total well over 1000 pages. There the historical and epistemological
aspects will not be covered to the same extent as here, which makes the topic of the book
under review particularly well-chosen.

The role which type theory has played and still plays in writing down mathematical
knowledge in a consistent way can roughly be divided into two successive stages.

(1) Limiting the set of expressions, that is, propositions and their constituents, to the
well-typed ones and thereby avoiding the paradoxes. For example, the Russell paradox
in the form of the unrestricted comprehension schema Jy. Vx. y(x) <= ¢, leads to
inconsistency by taking —x(x) for ¢. One way out is a type system in which expressions
like x(x) are not well-typed. This is the line of the Principia Mathematica by Russell
and Whitehead, explained in a modern setting in Part I of the book.

(2) Adding an extra layer of expressions representing proofs. In (1), propositions have a
type but do not play a role as types themselves. In constructive mathematics arose the
insight that a proof of an implication ¢ —  can be viewed as a function mapping
proofs of ¢ to proofs of w. For example, the identity function on the set of proofs
of ¢ can be viewed as a proof of ¢ — ¢. This gave rise to an interpretation called
Propositions as Types, in which one views a proposition as the type of all its proofs.
This interpretation does not only make sense for implication, but can be extended to
all connectives and quantifiers. For example, the left projection function on pairs of
proofs of ¢ and w can be viewed as a proof of ¢ A w — ¢. This makes it possible to
have one type system in which one can represent the domains of individuals, functions,
propositions as well as the proofs. This is the line of the Automath system initiated
by De Bruijn, based on the constructive interpretation of proofs by Kolmogorov and
Heyting, formalized by Curry and Howard. This is what Part IT of the book is about.

PARrT I.

Ch. 1: Gives a historical account of the relevant paradoxes.

Ch. 2. Presents in detail the type system of the Principia Mathematica and relates it to
modern typed lambda calculus. This results in a rather complicated system, so-called
Ramified Type Theory (RTT), which has both types and orders, but which is completely
predicative.

Ch. 3: Deals with relaxing some of the constraints of the Principia. The relaxation is
traditionally called deramification and boils down to leaving out the orders from the
types. This leads to a type theory known as the Simple Theory of Types (STT), which is
impredicative. For example, Vp : . p is a proposition which quantifies over propositions.
If we give this proposition the type * then the range of the quantification includes the
proposition itself. This is impredicative. In a predicative system one would give it a
different type, one order higher, e.g., (Vp: * . p): *. But then one may need also
(Vp: +'. p) : " and so on. Although impredicativity poses serious semantical challenges,
it does not lead (at least not by itself) to inconsistencies. STT became later known as
Church’ Simple Theory of Types. The last section of this chapter reviews Kripke’s Theory
of Truth (KTT), in which one leaves out the types and retains the orders. Among other
things it is shown that RTT can be embedded in KTT in a sound and complete way.
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PART I1. This part is based on the Propositions as Types (PAT) interpretation.

Ch. 4: Sketches the two variants of PAT: (i) identifying a proposition with the type of its
proofs (Curry and Howard), and (ii) mapping a proposition ¢ to the type proofs(¢)
of its proofs (De Bruijn). For the latter approach the phrase Proofs as Terms is more
adequate. Typed lambda calculi of a special format, so-called Pure Type Systems (PTSs)
and a classification of these, the Barendregt Cube, are introduced.

Ch. 5: Elaborates the PAT interpretation for STT and RTT. This involves the definition of a
suitable typed lambda calculus ARTT and a formalization of the respective proof theories
in this lambda calculus. The chapter culminates in the proof of the soundness of the
embedding of RTT (and STT) in ARTT. The reviewer could not find a result on the
completeness of the embedding, which presumably doesn’t hold.

. 6: Investigates the correspondence between RTT and the type system Nuprl based on
Martin-Lofs type theory. The latter type theory was originally developed as a foundation
of constructive mathematics and is one of the strongest predicative type theories. The
orders are clearly visible in the universes typed #; : %> : *3.... Again the chapter
culminates in a soundness proof. Nuprl proves slightly (and harmlessy) more embedded
judgements of RTT than RTT itself.

Ch. 7: Describes the system Automath initiated by De Bruijn. Automath is the first proof’
assistant (also called logical framework). The goal of the Automath project is to de-
velop a universal language for mathematics, in such a way that proofs can be verified
mechanically. This is the old ideal of Leibniz and Hilbert, where the ambition to decide
mechanically on truth (which is known to be impossible in general) has been replaced
by the mechanical verification of proofs (which is already difficult enough). De Bruijn
discovered independently PAT with proofs(¢). Automath has been highly influential,
also through its successors Coq and Nuprl. (Outside the scope of the book, but worth
mentioning is that De Bruijn discovered a technique called nameless dummies which was
the first correct implementation of bound variables.)

C

=

Part I11. This part deals with extensions of Pure Type Systems with definitions (Ch. 8),
parameters (Ch. 9) and the combination of the the two (Ch. 10).

REMARKS.

The overall presentation is very careful, systematic and detailed. This sometimes leads to a
high degree of repetition, for example, the same set of PTS terms is defined on pages 112, 116,
311, 312, 328, and variations of this definition are abundant. It would have been possible to
sacrifice some details and some variants of systems in favour of other important topics in type
theory: inductive types, extensionality, the Logic Cube and Girard’s Paradox. Martin Lof
systems could be given a bigger role, for example as an introduction to the chapter on Nuprl.
The methodological choice for PTSs has worked out very well for structuring the systems
treated in the book. Unfortunately, as many of these systems are almost PTSs, many of the
metaresults had to be verified again (this is no criticism, but an indication that the notion of
PTS is not even general enough). I warmly recommend this book to anyone interested in the
historic role of type theory in the foundations of mathematics.

MARC BEZEM

Institute of Informatics, University of Bergen, Postboks 7800, N-5020 Bergen. Norway.
bezem@ii.uib.no.

Linear logic in computer science, edited by T. Ehrhard, J.-Y. Girard. P. Ruet, and P. Scott,
London Mathematical Society Lecture Note Series, 316. Cambridge University Press, 2004,
392 pp.

18 years have passed since linear logic was introduced by Jean-Yves Girard in a 1987
Theoretical Computer Science article. When in 2005 (on its 30th anniversary) the journal
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compiled the list of its 100 most cited articles, Girard’s article turned out to top it. This book
illustrates how far linear logic has penetrated computer science and how the relationship has
been shaping up over the years. Assuch, it should appeal to anyone interested in applications
of logic and, especially, the logical foundations of computer science.

The attractiveness of linear logic for computer science stems from the special emphasis the
logic puts on the management of formulas. In short, the contraction and weakening rules are
severely restricted and can only be applied to formulas of a special shape. Apart from that,
a linear logic proof must use assumptions /inearly, i.e., exactly once. This turns out to open
up the path to a fine-grained analysis of intuitionistic and classical logics, and novel ways of
reasoning about the structure of proofs. In particular, linear logic brings in a new graph-
theoretic concept of a proof in the form of a proof-net. Proof-nets are designed to capture the
“crucial” elements in a proof and to eliminate the problem of inessential differences arising in
sequent calculus presentations (the so-called commuting equivalences). Their structure has
helped to analyze cut-elimination in logics, which quickly translated into intuitions about
reduction strategies for programs. An effective use of linear logic has been made in the field
of mathematical semantics of programs, where it has helped systematize the knowledge and
is now routinely used in descriptions of the semantic structure of models. Linear logic has
also become a basis for the design of resource-sensitive type systems.

This book is a representative collection of research highlights inspired by linear logic. It
begins with a series of tutorial papers, which should be especially useful to readers wishing
to get a quick overview of the role that linear logic has played in several different contexts.
The tutorial part is followed by some very recent contributions that demonstrate the current
state of the art in understanding a number of topics that arose in research into linear logic.
Finally, the closing invited articles present new areas of application in which taking advantage
of linear logic offers a new perspective on the subject.

The first tutorial by Rick Blute and Phil Scott is a comprehensive survey of connections
between linear logic and category theory. Quite remarkably, the proof theory of linear
logic corresponds to many well-established notions in category theory, which creates a fer-
tile ground for interaction between the two subjects. All of the category-theoretic concepts
needed to analyze linear logic are introduced and discussed in this tutorial, as well as illus-
trated with many examples. It will provide the reader with indispensible vocabulary and
methodology to track and understand the recent progress in investigations into the seman-
tics of proofs and programming languages. The numerous category-theoretic links have by
now become part of the folklore in the field and made it much easier for researchers to
communicate about correspondences between type theories and semantic universes.

While the first tutorial concerns linear logic in the context of mathematical semantics, in
the second one Stefano Guerrini describes in detail how to use linear logic to analyze the
operational semantics of the A-calculus. Two properties of linear logic make this application
possible. Firstly, A-terms can be readily translated into it, for example, via the 4 = B =
!4 —o B translation. Secondly, thanks to the geometric nature of proof-nets, cut-elimination
can be carried out by graph rewriting. The combination of the two turns out to reveal
powerful geometric insights about A-term reduction, which in particular can be used to
identify optimal reduction strategies.

The first two tutorials present linear logic in the tradition of the ‘computation as cut-
elimination’ paradigm, which constitutes a logical foundation for functional programming.
The next one surveys the influence that the logic has had on logic programming, which
regards proof search as the logical counterpart of computation. Here Dale Miller gives an
overview of the development of linear logic programming languages and explains the new
kinds of search strategies that the richer structure of linear logic allows for. Towards the end,
he also lists the fields of application in which linear logic programming has made a difference.
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In the final tutorial Glynn Winskel exposes the ubiquity of linearity in distributed com-
putation, where it is unrealistic to expect processes to have unrestricted ability to copy other
processes. He introduces a process language with built-in linearity restrictions and demon-
strates that, in spite of them, it is expressive enough to represent many common idioms of
distributed computation. The language is subsequently studied semantically using domain-
theoretic techniques inspired by the semantics of linear logic.

Altogether, the tutorials can be recommended as points of entry to the subject, especially
for readers with a logical background. A little more background knowledge will be needed
to understand the contribution of the four articles following them, which offer an insight into
the sort of problems that have been studied by the linear logic community.

In one of them, Paul-André Melliés revisits the issue of proof-net correctness and proposes
a new topological correctness criterion based on homeomorphism. Proof-nets are also the
subject of another article, by Olivier Laurent and Lorenzo Tortora de Falco, in which the
authors set out to identify the right notion of a proof-net in polarized linear logic. The
interest in the polarized fragment stems from the fact that classical logic can be translated
into it and the fragment is easier to analyze than full propositional linear logic. The next
article by Jean-Marc Andreoli introduces Coloured Linear Logics, which in turn are well-
behaved extensions of linear logic satisfying the desirable properties of cut-elimination and
focussing. The new logics are investigated through a novel sequent calculus based on explicit
addresses of occurrences of formulas in proofs. This way of referencing is fundamental to
Girard’s programme of ludics, started in 2001, which aims to be a novel interactive and
resource-sensitive account of logic that refines linear logic. Some aspects of ludics, the issue
of uniformity in particular, are explained in this book in an article by Claudia Faggian et al.,
who develop instructive examples in this new area.

The book closes with two invited articles. Jim Lambek reports on the latest linguistic
applications of deductive systems related to noncommutative linear logic and explains their
polycategorical semantics, while Jean-Yves Girard introduces a new interpretation of linear
logic inside the realm of quantum mechanics. The latter article illustrates one of the most
recent research directions emerging from investigations into linear logic: attempts to recast
quantum physics in terms of logic and category theory.

To summarize, the book successfully documents a very fruitful interplay of logic with
computer science that has been brought about by the study of linear logic. One would like
to see many more such examples in the future.

ANDRZEJ S. MURAWSKI

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1
3QD, UK. Andrzej.Murawski@comlab.ox.ac.uk.

ITAY NEEMAN. The determinacy of long games.  De Gruyter Series in Logic and its
Applications, vol. 7. Walter de Gruyter, Berlin, 2004, xi + 317 pp.

The deep connection between large cardinals and determinacy has been a central concern
of modern research in set theory. The simplest possible setting is easy to recall: A set C C w”
is fixed, and two players I and II alternate choosing integers x () for infinitely many stages,
with player I playing first, thus defining a real x = (x(n): n € ) € w®. We can call these
infinitely many moves a round. Player I wins this round iff x € C, otherwise player II wins.
Let’s denote this game by G,(C). A winning strategy for I is a function 7: ©<” — w such
that if at each stage n player I plays x(2n) = t((x(0),....x(2n — 1))), then the resulting real
x isin C. Similarly we can define a winning strategy for player II, and G, (C) is determined
iff one of the players has a winning strategy.

From a well-ordering of the reals it is easy (by a diagonal argument) to produce a non-
determined set of reals. However, large cardinal axioms imply that all sets of reals in L(R),
and more, are determined. See, for example, Neeman’s papers Optimal proofs of determinacy,
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The Bulletin of Symbolic Logic, vol. 1 (1995), pp. 327-339 and Optimal proofs of determinacy
11, The Journal of Mathematical Logic, vol. 2 (2002). pp. 227-258 (from now on, Opdll).
Conversely, from the determinacy of sufficiently closed pointclasses of reals, the existence
of inner models with large cardinals can be established. See, for example, the forthcoming
paper by Koellner and Woodin, Large cardinals from determinacy, to appear in the Handbook
of Set Theory, Kanamori, Foreman, Magidor, eds. All of this constitutes what one could
call the first generation of results tying large cardinals and determinacy. This is of course
informal notation, and not intended to convey the impression that nothing else can be said
or done about first generation results.

The second generation of results, to which the book under review is a seminal contribution,
probably begins with John Steel’s paper Long games, in Cabal Seminar 81-85, Kechris,
Martin, Steel, eds., Springer (1988), pp. 56-97 (from now on, Lg). In the presence of
large cardinal axioms, the first generation results focus on obtaining the determinacy of
more and more complex real pointclasses, where the complexity is measured descriptive set
theoretically. Here, the attention shifts from the complexity of the classes to that of the games
themselves, by allowing them to run for longer than « many stages.

This book is intended for a serious graduate student or a researcher in the area. It is very
carefully written and although a serious effort has been made to motivate its arguments, they
tend to be very long and technical, and a novice may feel lost at points. In An introduction
to proofs of determinacy of long games, in Logic Colloquium ’01, Lecture Notes in Logic,
vol. 20, Baaz, Friedman, Krajicek, eds., AK Peters (2005), pp. 43-88, Neeman has written a
wonderful expository account of the theory described in this book, leaving out the technical
details that comprise most of the book itself, and the reader is encouraged to look at this
paper first, as a motivation for the work to come.

In terms of prerequisites for these technical details, the two papers by Martin and Steel
JSL LVII 1332 and JSL LVII 1333, and Neeman’s Inner models in the region of a Woodin limit
of Woodin cardinals, Annals of Pure and Applied Logic, vol. 116 (2002), pp. 67-155 (from
now on, ImrWIWc) are essential, although if the reader is familiar with the basic theory of
iteration trees and is willing to accept some results as black boxes, then Appendix A of the
book will suffice.

The book begins with a lively historical introduction in which basic definitions are recalled.
It explains how the central large cardinal concept of Woodin cardinal was isolated and why
it is the key notion in determinacy results. In their pivotal papers cited above, Martin
and Steel introduced the notion of iteration tree, which is also at the core of modern inner
model theory. In short, nice inner models for large cardinal notions weaker than Woodin
cardinals can be compared by iterating ultrapowers, very much as in Kunen’s argument for
models with measurable cardinals, see e.g.. Jech, BSL XI 243. These are essentially /inear
iterations, and this linearity seriously bounds the complexity of the reals that can belong
to such inner models (for example, in the fine structural context, all these reals are A} in a
countable ordinal). Martin and Steel found a non-linear method of iterating ultrapowers
of inner models with Woodin cardinals. These models give then rise to iteration trees,
trees of structures with embeddings between the models appearing along their branches.
If two models are compared this way, at limit stages of the comparison process, different
possibilities on how to continue the trees may arise, and the existence of these choices
increases the complexity of their comparison process and explains why these models allow
more complicated reals than those appearing in linearly iterable models.

The comparison process between models with Woodin cardinals may be naturally de-
scribed in terms of iteration games between two players, “good” and “bad”. There are
several kinds of iteration games, but essentially all consist of “bad” playing iteration trees
and then “good” picking a branch leading to a well-founded model, which “bad” then uses
as the root of a new tree to continue the game, with this going on for as many rounds as
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the game specifies. The game ends if an ill-founded model is produced, otherwise “good”
wins. If “good” has a winning strategy, then the original model at the root of the first tree
played by “bad” is iterable and the strategy is called an iteration strategy. Neeman’s ImrWIWc¢
shows that the existence of enough large cardinals implies the existence of nice models M,
i.e., iterable models of enough set theory with as many Woodin cardinals as required for any
of the applications in the book.

The key idea is now that these iteration strategies can be used to produce winning strategies
for either I or II in long games of the kind one considers when interested in determinacy by
means of what one could call a translation procedure. The simplest of these long games,
G (uin)(C). for C C (w”)"*!, is defined similarly to G,(C). only that now 7 + 1 rounds are
played, one after the other, thus producing an (n + 1)-tuple of reals (xo. ..., Xn). As before,
player I wins iff this tuple is in C. Say that C is IT}. Then the determinacy of G (ns)(C)
implies the determinacy of all the games G,,(D) for D in IT._ ;. since the quantifiers in the
projective definition of D can be simulated with the runs that give rise to xi.. ... X,.

The core of the book is a series of arguments showing how to translate iteration strategies
for nice models M as above into winning strategies for either player in one of several possible
kinds of long games. For the games G,,.(,+1)(C) just explained, this is described in detail in
chapter 1, which also presents a concise introduction to the theory of Woodin cardinals. This
argument strongly resembles the one in Opdll, and the reader may want to look at this paper
as a warm-up. This chapter also introduces, in a simple setting, the notation that is required
to understand subsequent chapters. I must say that at some points the author’s choice of
notation seemed to me slightly odd, but no non-standard usage occurs, and the presentation
is detailed and careful enough that the reader may just as well ignore my comment.

Several games are introduced, they are each more elaborate than the ones from previous
chapters. The games described in chapter 1 are thus designed to provide a proof of projective
determinacy by showing the determinacy of games G,,.(,+1)(C) for C closed. In chapter 2
determinacy is shown for games of fixed countable length, and in chapter 3 this is generalized
even further to games of continuously varied countable length. These correspond, and
generalize, the long games of Steel’s paper Lg. Finally, chapters 4 through 7 are devoted
to the proof of determinacy of games whose length reaches a local cardinal, i.e., this length
is uncountable in some inner model, but not necessarily in V. As a typical application,
Exercise 7.F.14 shows the result of Woodin that (from the existence of an iterable M such
that there is a countable 6 that in M is Woodin and limit of Woodin cardinals), there is a
proper class inner model P such that, in P, all definable games of length w! are determined.
The techniques of the book have been further generalized in subsequent papers by Neeman,
so this area of research is clearly very promising territory.

Along the way, the reader encounters a few additional topics of independent interest. For
example, universally Baire sets and homogeneously Suslin sets are discussed in chapter 2, and
in chapter 4 a very general presentation of Woodin’s extender algebra (in many generators) is
given. The only presentation of the extender algebra that I was aware of was what would be
in this context the algebra in one generator. See, for example, Steel An outline of inner model
theory, to appear in the Handbook of Set Theory. Kanamori, Foreman, Magidor, eds.

Let me finally say a few words about the translation procedure. Throughout the book the
setting consists of a nice inner model M as above, a set VW of Woodin cardinals from M (there
are some restrictions on the Woodin cardinals in WV, but we can ignore them here), some
0 € W and some col(w,d)-name A coding what is in essence a set of reals (associated to the
set we have been calling C). Actually, 4 is a name for a subset of (M || 6)” x »®, where
M || 6 denotes V. Essential to the arguments is the continuity of a series of approximating
games A[s] for s € ®<“. Continuity is important in that these games are given inside of
M although they give rise to games A[x] for x € w®. This matters for two reasons. An
obvious one is that sometimes x ¢ M. A more subtle one is that M is replaced frequently
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by other models N coming from iteration trees on M, so the games A[s], being elements of
M, can be moved into the corresponding new games on N via the same embeddings that
move M. The games A[s] build on the argument from Martin and Steel, JSL LVII 332 and,
as in Neeman’s game in Opdll, either a winning strategy exists for player I in M for A[x] or
a winning strategy exists for player II in an ultrapower of M for a game corresponding to
the images of § and of 4 under this ultrapower. The game A[x] consists of player I trying to
witness that x € A[h] for i generic over M with II trying to witness the opposite. Greatly
simplifying what is actually done, in each stage. player I plays conditions in col(w.d) and a
set of names for reals. These collections of names are decreasing, the conditions force that
any name in the collection should be in 4, and that these names agree more and more with
x. Player II plays dense sets and the conditions that player I plays should be contained in
these dense sets, thus eventually producing a generic for col(w,d) as required if player I has
a winning strategy.

The key notions that the book introduces are those of pivot and mixing games. The pivot
games, intended in the case where player I has no winning strategy, build in addition an
iteration tree on M (using extenders below §), and a continuous witness that the relevant
branch on which the outcome for player II is examined is well-founded. This is done using a
key lemma from Martin and Steel, JSL LVII 332. Mixing games give player I some flexibility
on how the iteration trees must be extended and in particular restrict the possible extenders
to be used along the way. The pivot game is designed so that either player I has a winning
strategy in A[x] or else player II ought to have a winning strategy in the shifted game. This
is by no means automatic. For example, chapter 5 is devoted to what amounts to a proof
that this is the case for the long games to be presented in chapter 7. What can ultimately
be described as a correctness argument for M shows that this implies that either I or IT has
a winning strategy in the original game on C. The way these pivot and mixing games are
combined is quite delicate. The extender algebra is used in some cases to produce reals that
guide how these games are executed. The iterability of M is essential to even describe how
the games on M corresponding to continuously played games are to be organized.

To close, let me add that this book is a very welcome addition to the literature in set theory
and a magnificent example of the high standards that the de Gruyter Series is intending
to achieve. It is by no means an easy book. but (as I mentioned above) it is very carefully
written, its arguments are in essence self-contained, and motivation is presented, even though
somewhat more sparingly as the book progresses; both the techniques and even the definitions
are quite involved, but a patient and careful reader will surely be more than handsomely
rewarded.

ANDRES EDUARDO CAICEDO

Department of Mathematics, Mail code 253-37, California Institute of Technology,
Pasadena, CA 91125, USA. caicedo@caltech.edu.

DaviD J. PyM AND EIKE RITTER. Reductive logic and proof-search—Proof theory, semantics,
and control.  Oxford Logic Guides, vol. 45. Oxford Science Publications, 2004, 208 pp.

Since a long time mathematical logic has been formulated as a formalization of deductive
reasoning: given hypotheses, how a conclusion is derived. But computational logic has em-
phasized the reductive reasoning: given a putative conclusion, what are sufficient premisses?
In this monograph the authors aim at showing that the reductive view of logic is fundamental
and also at providing a semantics of proof-search that is strongly related to the model theory
of the studied logic. They focus on how to define such a semantics in intuitionistic logic which
models the logical and operational aspects via an embedding of intuitionistic reductive logic
into classical reductive logic. An illustrating example of this semantics of proof-search is
given throughout a particular class of games. The presented work is a research monograph
and even if it includes familiar, established ideas and material, it provides many research
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contributions on the subject of reductive logic and proof-search. As mentioned by L. Wallen
in the foreword, the reader will have a motivated and significant introduction to new ap-
proaches to semantic investigations of syntactic formulations of logical systems to support
efficient proof-search in formal logics.

In Chapter 1, the authors introduce their perspectives on reductive logic with respect
to deductive logic and proof-search. Theorem proving, or algorithmic proof-search, is
considered as a central technology within computational sciences and many problems, like
parsing, type-checking, specification and correctness, can be formulated as judgements about
formal texts, for instance represented in logical formalisms. In this context the authors
emphasize that many interactive theorem provers and reasoning tools, that implement partial
or total procedures to prove such judgements, have common logical bases, namely reductive
inference and reductive proof. Moreover, calculi often formulated as deductive systems (for
instance resolution) can be reformulated as reductive systems. A main goal of the authors
is then to provide clear and usable model-theoretic foundations, and then related proof-
theoretic solutions, to deal with the partiality of objects (reductive proofs) built during a
reduction and also the key computational feature, namely the control, which leads from
reductive logic to proof-search. The proposals to solve the related problems are firstly a
framework based on a notion of Kripke world which can maintain lost information and
secondly, for intuitionistic logic, an embedding of intuitionistic reductions inside classical
reductions in which the control of intuitionistic search (mainly backtracking) is studied.
The originality of the approach lies in the choice of the Auv-calculus and its categorical
models, both to relate intuitionistic and classical logic consequences and to take account
of the backtracking semantics. Moreover specific games models are developed to provide
a complementary perspective towards what the semantics of proof-search is. In order to
present existing material and contributions, the authors also discuss some mathematical
prerequisites for the readers: logical prerequisites about semantics and proof theory but also
algebraic prerequisites about lattices, categories and functors.

In Chapter 2, the authors introduce the natural deduction proof theory of intuitionistic
logic, with graphical and sequential systems, and the simply-typed A-calculus that is a lan-
guage of realizers for intuitionistic consequences. Starting from the idea of free deduction
introduced by M. Parigot, they study classical logic in a similar way and then propose a
language, the Auv-calculus, of realizers for classical natural deduction. A key point is the use
of Au-calculus for classical logical and its non-trivial extension with the disjunction.

In Chapter 3, they focus on semantics for the systems introduced in Chapter 2 and
define categorical models of the related calculi. They also propose games models for both
intuitionistic and classical proofs. A new form of games semantics is defined combining
features of Lorenzen’s games for intuitionistic provability, Hyland and Ong’s games for
linear logic and Ong’s games for Au-calculus. It forms the basis of an example developed
throughout the monograph. Then semantics of classical proofs is presented through new
models of the Zu-calculus.

In Chapter 4, the authors present the main concepts about reductive proof by introducing
Gentzen sequent calculus that appears significant as a basis for reductive proof. Moreover,
a representation of sequent calculus proofs in the Auv-calculus with explicit substitution is
given. Then, they provide a systematic account of reductive proof theory and a systematic
analysis of the analytic view of resolution by the notion of uniform proof and in particular
a reconstruction of Mints intuitionistic resolution. This chapter ends with a discussion of
the computational complexity of the proposed methods. It gives a systematic account of
reductive proof theory.

In Chapter 5, they define a class of categorical models for reduction and then provide a
systematic model-theoretic account of reductive logic. The main problem is to find semantic
structures that take into account not only the space of proofs but also the space of reductions.
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They consider specific structures for modelling reductions which generalize structures giving
models of proofs and then defining models for both intuitionistic and classical reduction. An
appropriate soundness theorem for reductions and also a completeness theorem via a term
model construction are proved.

In Chapter 6, the authors analyze the addition of algorithmic control regimes to reductive
proof then leading to proof-search. They present a semantics for proof-search in reductive
logic which integrates backtracking within the model theory and thus captures the slogan
“proof-search is reduction+control”. Moreover, proof-search in intuitionistic logic is studied
through embedding of intuitionistic reduction inside classical reduction and a game semantics
for proof-search is provided.

There is no chapter about conclusions and perspectives but in a discussion in Chapter 1,
the authors, after having summarized the main contributions, identify a few possibilities
of further developments like: the extension of the theory presented with predicates and
quantifiers, a study of other aspects of control in proof-search, a development of this analysis
for some substructural logics like fragments of linear logic, variants of bunched implications
logic and finally a study of the relationships between semantics of reductive logic and proof-
search proposed in this monograph and Girard’s Ludics, starting from recent results about
game semantics.

This research monograph should be of interest to readers of this Bulletin. The approach
and the results are clearly and rigorously presented with comments and formal proofs to
support them. The prerequisites are appropriate to the intended audience of research, i.e.,
logicians and theoretical computer scientists who can find, chapter by chapter, new results
about these new semantic perspectives. With this research monograph the authors provide
to researchers interested in foundations of proof-search some key points that allow to have a
better understanding about the necessity and the impact of semantics for new formulations
of logical systems in the proof-search perspective.

DIDIER GALMICHE

LORIA — Université Henri Poincaré, Campus Scientifique, B.P. 239, 54506 Vandceuvre-
les-Nancy Cedex, France. Didier.Galmiche@]oria.fr.

MICHAEL MITZENMACHER AND ELI UPFAL. Probability and computing: Randomized algo-
rithms and probabilistic analysis. =~ Cambridge University Press, Cambridge, 2005, 386 pp.

Over the past three decades, a significant amount of research in algorithms and complexity
has been devoted to the study of randomness and computation. One of the two main themes
in this area of research is the design and analysis of randomized algorithms, which have access
to a stream of random bits for use during computation. Experience has shown that for many
computational problems, it is easier to design an efficient randomized algorithm which has
good performance bounds (“with high probability”), than to find an efficient deterministic
algorithm with comparable bounds. One example of this phenomenon is primality testing.
Although it is now known that a deterministic algorithm for primality testing does exist,
for decades the only known algorithm was a very simple randomized algorithm. It is often
the case that a randomized algorithm is very simple to describe, and the main challenge lies
in analysing the algorithm and in proving that desirable performance guarantees hold with
high probability. The second main theme in randomness and computation is the analysis
of the expected performance (perhaps the quality of the output, or the running time) of a
deterministic algorithm, when the inputs are random and chosen according to a probability
distribution. Thisis called probabilistic analysis, and it is valuable because worst-case analysis
of an algorithm does not capture the typical performance of the algorithm. Many of the
mathematical techniques used in probabilistic analysis of algorithms are the same techniques
used in the analysis of randomized algorithms. Therefore it makes sense for students to
study these topics as a whole. This is the idea behind the Probability and Computing book.
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Mitzenmacher and Upfal present the basic techniques for reasoning about probability and
algorithms in an accessible way. The book is intended for advanced undergraduate and
beginning graduate students.

There are fourteen chapters in Probability and Computing. The early chapters mostly focus
on basic probabilistic techniques. In the later chapters, the authors draw on their own areas of
expertise to give a more comprehensive treatment of research topics such as Ball-in-Bins, the
Markov chain Monte Carlo (MCMC) method, and Coding theory. However, the emphasis
in this text is on techniques rather than applications.

Chapter 1 is an introduction to probability in the context of computer science. Definitions
of concepts such as random event, the inclusion/exclusion principle. conditional proba-
bilities, and Bayes” Law are given. These basic definitions are illustrated by examples of
randomized algorithms for testing polynomial identities and verifying matrix multiplication.
The authors also present and analyse the simple edge contraction algorithm for the Min-cut
problem, proving that it succeeds with probability 2/n(n — 1).

Chapters 2—-4 present the techniques most commonly used by researchers in randomized
algorithms. Chapter 2 (Discrete Random Variables and their Expectation) presents, and
proves, basic facts about expectation such as linearity of expectation, Jansen’s Inequality and
conditional expectation, and also defines the Bernoulli and Binomial random variables. These
ideas are then applied to the analysis of the coupon collector problem, and to the analysis
of randomized Quicksort (and to the average-case analysis of deterministic Quicksort).
Chapter 3 (Moments and Deviations) presents simple techniques for bounding the tail
distribution of a random variable. It defines variance and moments, and proves Markov’s
Inequality and Chebyshev’s Inequality. It then presents the randomized median-finding
algorithm, and uses Chebyshev’s Inequality to prove that the algorithm returns the median
element with high probability. Chapter 4 (Chernoff Bounds) introduces Chernoff Bounds,
which provide exponentially decreasing bounds on the tail distribution. The authors prove
the Chernoff Bounds for the sum of a set of independent Poisson trials (the most commonly
studied case of Chernoff Bounds). They use this result to analyse a randomized Set Balancing
algorithm, and algorithms for permutation routing on the hypercube and on the butterfly
network.

Chapter 5 (Balls, Bins, and Random Graphs) is more application-oriented than the earlier
chapters. It introduces the Balls-in-Bins model and derives simple bounds on the probability
that any bin receives a certain number of balls. It introduces Poisson random variables,
and shows that the Poisson random variable can closely approximate the distribution of
an individual bin in the Balls-in-Bins model. Applications of Balls-in-Bins to hashing are
discussed. The second theme of Chapter 5 is the Random Graph model. The basic models
Gup and G,y are introduced. The authors then present a randomized algorithm to find a
Hamilton cycle (with high probability) in a random graph from G, , when p > 40Inn/n.

Chapter 6 discusses the Probabilistic Method. where the goal is to prove existence of an
object with certain desirable properties, by proving that these properties hold with positive
probability when an object is randomly chosen from a particular set. In this chapter, the
authors first present a randomized algorithm to find a large cut in a graph. Then they present
standard results which are used for (probabilistic) proofs of existence, such as the Second
Moment Method and the Lovasz Local Lemma. They also show how the probabilistic
method can be made constructive in some cases. Examples presented in the chapter include
threshold behaviours in the Random Graph model, proof of existence of edge-disjoint paths
in certain graphs, and existence of a satisfying assignment for certain cases of k-SAT.

Chapter 7 is concerned with Markov chains and Random Walks, a theme which is con-
tinued in Chapters 10 and 11. This chapter presents the basic definitions for Markov chains.
The authors prove that any finite ergodic Markov chain has a stationary distribution, a key
result in probability theory. They define a Markov model of a simple queue and evaluate its
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stationary distribution. They consider random walks on undirected graphs, and discuss the
cover time of such a walk. The chapter ends with a nice treatment of Parrando’s paradox.

Chapter 8 (Continuous distributions and the Poisson process) is the only chapter of the
book that concentrates on continuous distributions. The chapter introduces distributions
such as the exponential distribution, the Poisson process (used to model arrival to a queue)
and the continuous-time Markov process, which are important in computer science. The
main example presented in this chapter is the Markovian queue, in particular, the M/M/1,
M/M/1/K and the M/M/oo queues in equilibrium. The chapter also contains a proof of
the PASTA principle (Poisson arrivals see time averages) for the special case of M/M/1 in
equilibrium.

Chapter 9 (Entropy. Randomness and Information) is concerned with entropy, coding
theory and compression. The authors bound the average number of bits output by the
best extraction function for a random variable X with entropy H (X). for the special cases
of a uniform random variable and a Poisson trial with parameter p. They then prove
related results for compressing the outcome of a sequence of independent Poisson trials with
parameter p. Finally, they prove Shannon’s theorem for coding and decoding over a binary
symmetric channel.

Chapters 10 and 11* are mostly concerned with random sampling. Chapter 10 (The
Monte Carlo Method) begins by considering the basic Monte Carlo method. The authors
first show how to use Chernoff bounds to bound the number of samples required to obtain an
(1 % ¢) approximation of a ratio. The concept of an FPRAS (fully-polynomial randomized
approximation scheme) is defined. and an FPRAS for approximately counting satisfying
assignments for DNF formulae is presented. Next the concept of an FPAUS (fully polynomial
almost-uniform sampler) is defined. The authors show how an FPAUS for sampling elements
of a set can be converted to an FPRAS for approximating the cardinality of a set, by
demonstrating how to perform this conversion for independent sets. The chapter concludes
by defining the Markov chain Monte Carlo (MCMC) method, where sampling is carried out
by defining a Markov chain with the appropriate stationary distribution, and running that
chain for a large number of steps. Chapter 11* (Coupling of Markov chains) is a “starred”
chapter, indicating more difficult content. This chapter is concerned with the mixing time
(number of steps required to approach the stationary distribution) of a Markov chain. The
authors introduce the Coupling technique for bounding mixing time. They state and prove
the standard coupling lemma, and apply this lemma to prove that a natural card-shuffling
chain mixes after nIn(n/¢) steps, along with other applications. They present a well-known
bound (using coupling) on the mixing time of a Markov chain on proper colourings of a
given graph, when the number of colours available is greater than twice the degree of the
graph. They finish the chapter by informally introducing a simpler variant of coupling called
path coupling, which is often sufficient for bounding mixing time. Part of the proof of the
path coupling theorem is set as Exercise 11.7.

Chapter 12 is concerned with Martingales, which are sequences of random variables which
arise in the analysis of random walks and in gambling problems. The concept of stopping
time is defined, and the martingale stopping theorem, which proves that under certain
conditions, expected return at the stopping time is equal to the value of the initial random
variable, is stated without proof. Wald’s equation, which is often used in the analysis of Las
Vegas algorithms, is stated and proved. Finally the authors prove some tail inequalities for
martingales, known as the Azuma-Hoeffding Inequalities, and apply these inequalities to
problems in pattern matching and balls-in-bins.

Chapter 13 (Pairwise Independence and Universal Hash Functions) is concerned with
reducing the amount of randomness required for certain applications. The authors define
pairwise independence. and show how to construct 2 — 1 pairwise independent bits from b
random bits. They use this to derandomize the large-cut algorithm of Chapter 6. They
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introduce Chebyshev’s Inequality for pairwise independent values. They consider families of
universal hash functions, and give examples of a 2-universal family of hash functions and a
strongly 2-universal family of hash functions. Finally, they show how a family of 2-universal
hash functions can be used to design a randomized algorithm to find heavy hitters in data
streams.

Chapter 14* is a “starred” chapter on the subject of Balanced Allocations. The main
theme of this chapter is how load balancing in the Balls-in-Bins model can be improved
when a ball has “two choices” to choose from for its target bin. The authors apply Chernoff
bounds in a long proof to show that the maximum load of a bin is significantly smaller in the
“d choices” model than in the standard Balls-in-Bins model of Chapter 5, where each ball
choses one random bin and is allocated to that bin. The authors then discuss applications of
the power of two choices to hashing and dynamic resource allocation.

1 enjoyed reading Probability and Computing and 1 would use it as a textbook if I were
teaching a course on this subject (probably covering a subset of the topics). The intended
audience is advanced undergraduates and beginning graduate students, and the material
is presented at the right level for those students. I think that an introductory course on
algorithms and an introductory course on complexity would both be prerequisites for the
book, especially because computational complexity is mentioned in passing on a couple of
occasions through the text. The book assumes less knowledge of probability, but it would be
helpful if the reader had already taken a undergraduate probability course. The book is very
well-written, in a student-friendly style, with many basic steps of proofs being explained in
more detail than would be given in papers. Almost all the techniques and theorems which
are presented in this book come with complete proofs. In each chapter, any techniques which
are introduced in that chapter are tested out on a set of on example problems. The coupon
collector problem and variants of satisfiability both recur as examples in different chapters
of the text. Each chapter ends with a long set of exercises. The early exercises in each
chapter ask the student to perform basic manipulations, but each chapter also poses some
problems which require more creative thinking (harder questions are not highlighted on an
individual basis, though the two ‘starred’ chapters have more difficult exercises). There are a
few exploratory exercises throughout the book, which ask the student to write code and run
experiments to test hypotheses.

In comparison to other books, the subject matter of Probability and Computing is most
similar to the content of Randomized Algorithms. by Motwani and Raghavan. However, the
emphasis of the Motwani and Raghavan textbook tends more to particular applications of
randomness (in areas such as Data Structures, Geometric Algorithms, Graph Algorithms,
Approximate Counting, Parallel and Distributed Algorithms, Online Algorithms and Cryp-
tography) than this text, which concentrates on giving a thorough presentation of the many
techniques used in probabilistic analysis. Probability and Computing does contain some chap-
ters which are devoted to particular applications, but the applications which receive most
attention are Coding Theory, the Markov chain Monte Carlo method, and the Balls-in-Bins
model.

The only small complaint I have about Probability and Computing is that no references
are given in the book, apart from a list of about 15 more advanced probability textbooks
for further reading. Most textbooks in algorithms and complexity give references to the
papers where the material was originally published (usually by including a “notes” section at
the end of each chapter). Mitzenmacher and Upfal give no references to any papers in this
text. This is disappointing because some of the later chapters, especially the starred chapters
on Coupling and on Balanced Allocations, would otherwise be an excellent jumping-off
point for a PhD student interested in doing in-depth reading on a given topic. The lack
of referencing also means that the authors do not “tell the story” of how particular areas
of research developed over time. I think some extra background (and perhaps a bit more
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discussion of the complexity status of the problems in this text) would have improved the
book. Despite this, I think this is an excellent text which will be useful for anyone studying
randomized algorithms and probabilistic analysis.
MARyY CRYAN
School of Informatics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK.
mcryan@inf.ed.ac.uk.

ERIC SCHECHTER. Classical and nonclassical logic: an introduction to the mathematics of
propositions.  Princeton University Press, Princeton and Oxford, 2005, x + 507 pp.

This book is derived from and is designed for an introductory course in propositional logic
that includes some nonclassical logics. It covers classical propositional logic, intuitionistic
logic, Lukasiewicz’s 3-valued and infinite-valued logics, several relevance logics and the
implicational fragment of the modal logic S5.

There are six parts: Preliminaries, Semantics, Basic syntactics, One-formula extensions,
Soundness and major logics, Advanced results. The first part occupies nearly half of the
book. It is a long rambling discussion of elementary aspects of mathematics, philosophy,
set theory, topology. and formal languages. It is intended only as background reading and
could be skipped. Chapter 1 is an introduction for teachers. In Chapter 2, the introduction
for students, the author says, “Regardless of previous background. however, any liberal arts
undergraduate student might wish to take at least one course in logic, for the subject has
great philosophical significance: It tell us something about our place in the universe. It
tells us how we think—or more precisely, how we think we think. Mathematics contains
eternal truths about number and shape; mathematical logic contains truths about the nature
of truth itself.” (pp. 20-21) “ ... . but the abstract concept of number 3 itself does not
exist as a physical entity anywhere in our real world. It exists only in our minds.” (p. 27)
This mix of the nineteenth century view of logic as psychology with a Platonist view of logic
as about eternal truths may well leave students confused. Chapters 3 and 4 introduce set
theory and topology (at the level of, for example, Venn diagrams). Chapter 5, English and
informal classical logic, “ ... is not intended to be mathematically precise.” (p. 146) Here
his discussion of language and bias is not well considered: “When mathematicians talk, they
are attempting to copy ideas from the inside of one mathematician’s head to the inside of
another mathematician’s head, but there is no way to be absolutely certain that the two heads
end up containing identical mathematics.” (p. 148) Much of this and the previous discussion
uses the formal symbols from propositional logic, but the explanation of what they are meant
to formalize comes only much later. Chapter 6, Definition of a formal language, has many
good illustrations of use-mention difficulties: “... “V” is not disjunction. Itis the disjunction
symbol, and it will be used to represent different kinds of disjunctions,” (p. 217),s0 “ ... V
and A are not commutative in some peculiar logics ... ” (p. 217), but V also denotes itself,
“For instance, —m3m i AV-A is a string of length 6.” (p. 209) The author thus seems to
believe that a symbol may or may not be commutative.

The second half of the book (parts B to F) contains the presentation of the formal
systems. All the semantical interpretations of the formal language for the various logical
systems are presented in part B. Here the author mixes the formal language and the functional
interpretation of the formal language: “Hereafter we will replace the uninterpreted symbols

. with the symbols ... which represent a particular interpretation.” (p. 245-246) Axiom
sets are presented, each built up in part D from the “basic” logic of part C by adding one or
more formulas. He sometimes connects axiomatizations to semantics with a completeness
theorem, but more often shows only that one or more of the semantic interpretations he
has previously introduced are sound. Because of this arrangement, the first chapter of
each part begins with a variation on this distressing advice: “This chapter should be read
simultaneously with the next one or more chapters—i.e., the reader will have to flip pages back
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and forth. Apparently this arrangement is unavoidable. The present chapter contains several
very abstract definitions; the next few chapters consist of many examples of those definitions”.
(p. 313) Although there is quite a variety of interesting technical material in this book, the
presentations are often unclear and the terminology is peculiar. For example, intuitionistic
logic is called “constructive logic”, Lukasiewicz’s countably-valued logic is called “Zadeh
logic”. it and Lukasiewicz’s 3-valued logic are called fuzzy logics, the Deduction Theorem is
called the “Deduction Principle”, and so on.
ROGER D. MADDUX

Department of Mathematics, 396 Carver Hall, Iowa State University, Ames, IA 50011,

USA. maddux@iastate.edu.



