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Abstract If there is no inner model with ω many strong cardinals, then there
is a set forcing extension of the universe with a projective well-ordering of the
reals.
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1 Introduction

The goal of this paper is to prove a result, Theorem 2, illustrating the strength
(rather, lack thereof) of the hypothesis that the reals admit a projective well-
ordering. The reader should interpret this as saying that the lack of significant
large cardinal structure in the universe allows for pathological well-orderings.
This result appears in Chapter 2 of the first author’s dissertation [1] written
under the supervision of John Steel and Hugh Woodin at U.C. Berkeley.

Theorem 2 is a corollary of computations due to the second author, and it
was obtained by him independently. The version we present provides optimal
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complexity bounds, and in this form is due to the second author. In what follows,
by forcing we mean set-forcing. By a real we mean a subset of ω, although any
of the usual renderings of R would work just as well.

2 Below sharps

The following is most likely folklore but we were unable to locate a reference:

Theorem 1. Suppose V is not closed under sharps. Then there is a forcing exten-
sion of the universe with a �

˜

1
2-well-ordering of the reals.

Corollary 1. The conclusion of Theorem 1 holds in either of the following situ-
ations:

1. ω1 = ω
L[x]
1 for some real x.

2. K exists and is not closed under sharps.

Proof. If V is closed under sharps, then so is K, and clearly ω
L[x]
1 < ω1 for any

real x. ��
The argument for Theorem 1 is actually quite easy and resembles that in [11],

but without some of its complications. We decided to include it, since the proof
of Theorem 2 builds on this one.

Proof of Theorem 1. Let X be (a set of ordinals) such that X� does not exist.
By Jensen’s covering lemma there is δ > sup X such that δ+ = (δ+)L[X]. Force
to make δ countable while preserving δ+, and let r be a real coding X and
δ. Then ω1 = ω

L[r]
1 . Fix λ singular strong limit. Then λ is singular in L[r],

ν := λ+ = (λ+)L[r], and 2λ = λ+, as otherwise r� exists. It follows that there is
A1 ⊆ λ+ such that Lν[r, A1] = Hν . Let G be Coll(ω, λ)-generic over V, and
work in V[G]. Let A2 ⊆ ω code G. Notice ν = ω

V[G]
1 .

It follows that HC = Lν[r, A1, A2], as an easy consequence of the λ+-cc of
the forcing: any name for an element of HCVColl(ω,λ)

appears as an element of
(Hν)

V .
Let V1 = V[G]. In V1 let A ⊆ λ+ code r, A1, A2. We apply the almost disjoint

forcing technique of Jensen and Solovay to an extension of V1.

Claim. There is a set forcing extension of V1 preserving ν where there is a real
t such that HC = Lν[t].
Proof. Work inside V1. In L[r] there is a definable sequence of λ+ subsets of
λ. Any reasonable such sequence in fact is definable over Lν[r] and, moreover,
for a club set of γ < ν the same definition over Lγ [r] gives the first γ -many
terms of the sequence.

Let ŝ be a real coding λ. Then in L[r, ŝ] we can easily define from the L[r]-
sequence an ω1-sequence of almost disjoint reals.

Let A = 〈qα:α < ω1〉 be such an Lω1 [r, ŝ]-definable sequence. Recall that
HC = Lω1 [r, A].
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Let Q be the usual forcing for coding A by a real, using A, namely

Q = {

(s, F):s ∈ 2<ω and F ∈ Pω(ω1)
}

,

ordered by

(s1, F1) ≤ (s2, F2) ⇐⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

s1 ⊇ s2,
F1 ⊇ F2 and

∀α ∈ F2 ∩ A
((

s−1
1 {1}

)

\ dom(s2)
)

∩ qα = ∅).

It is easy to see, and well known (see for example [6, §II.2]), that Q is σ -centered
and that if G1 is Q-generic over V1, then

rG1 :=
⋃

{

s:∃F
((

s, F
) ∈ G1

)} ∈ (2ω)V1[G1],

G1 is definable from rG1 in V1[G1], and for all α ∈ ω1, α ∈ A iff |rG1 ∩ qα| < ω.
Fix such a G1. We claim that V1[G1] is as wanted, and that t = {2n:n ∈

ŝ} ∪ {2n + 1:n ∈ rG1} serves as a witness. Namely, Lω1 [r, A] ⊂ L[t], since
ŝ ∈ L[t], A is definable in L[r, ŝ], and A is definable from A and rG1 . Therefore
HC ⊆ L[t], since Q is ccc. Clearly, Lω1 [t] ⊆ HC, and we are done. �

Let V2 be the universe obtained in the claim. Then in V2 the reals admit a

1

2(t)-well-ordering, namely, the natural wellordering of R
L[t]. ��

Remark 1. In fact, if V is not closed under sharps, then the method of Schindler
[11] gives a stationary set preserving (in fact, reasonable) forcing P such that in
VP there is a �

˜

1
2-well-ordering of R.

3 Below ω strong cardinals

Theorem 2. Suppose there is no inner model with ω strong cardinals. Then there
is a set forcing extension of V with a projective well-ordering of the reals. In fact,
the core model K exists, and if n is the number of strong cardinals in K, then
there is an extension of V with a �

˜

1
n+3-well-ordering of R. The well-ordering can

actually be obtained to be �
˜

1
2 if n = 0 and V is not closed under sharps.

Proof. The idea of the proof is to obtain a model where CH holds and there
is a projectively definable ω1-sequence of almost disjoint reals, from which by
judicious use of almost disjoint forcing, as above, we can define a well-ordering
of R.

More carefully, we look for a model M of enough set theory containing all
the reals and such that

M |� CH + There is a projective well-ordering of R.
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We arrange by our use of almost disjoint forcing that M∩HC is itself projectively
definable, thus obtaining the desired well-ordering.

Let K be the core model, and let E be the coherent sequence of extenders
of K, E = EK, so K = L[E]. The model we will work with is K[r] = L[E, r],
where r is a real. We will arrange things so K[r] ⊇ HC (and CH holds). That
K[r] or, rather, a sufficiently long initial segment of K[r] is projective in the
codes if there are no inner models of ω strong cardinals follows from results of
Schindler [12], Hauser and Schindler [5] and Hauser and Hjorth [4].

Now we proceed to the details. We use [5,12], so mice and premice are in the
Jensen rather than the Mitchell–Steel sense.

Suppose that there is no inner model with ω many strong cardinals. Then
0 |• does not exist1, and this implies by [12] that K does. K is definable, and
generically invariant in the sense that for any poset P, KV = KVP

.

Claim. Let W be a universal weasel (so ORDW = ORD) and suppose W |�
β is a strong cardinal. Then

W |� β is a strong cardinal, as witnessed by extenders on E.

Proof. This is most likely folklore and archeology reveals variations of it in
print. See, for example, [14, Theorem 8.14]. For the case that concerns us, the
result follows from the argument given in [4, Lemma 1.5], together with the
realization that below 0 |• , the references to the measurable � can be dispensed
with in that proof.

Here is a brief sketch:
Since 0 |• does not exist, W |� I am iterable and there is an embedding

j : K → W. Since K |� V = K, we may assume W = K, and work inside W.
Suppose β is a strong cardinal, and let α > β+ be a cardinal. Let K1 witness

the very soundness of a sufficiently long initial segment of K, say K‖α. Let
E be an extender witnessing β is strong past α, and consider the ultrapower
embedding πE : K → Ult(K, E). In virtue of the inductive definition of K, we
have that KUlt(K,E)‖α = K‖α. Let K2 = πE(K1). Then K1‖α = K2‖α, and K2 is
a soundness witness for K‖β but not for K‖β + 1.

Compare K1 and K2, so they iterate to a common model K∗. Let π1 : K1 →
K∗ and π2 : K2 → K∗ be the iterations arising from the comparison. Then a
standard argument using the definability property shows that cp(π1) = β. It
follows that in the K1-to-K∗ side of the comparison, an extender with critical
point β was used, and the agreement of K1 and K2 implies that its length is
greater than α.

1 0 |• , zero-hand-grenade, was introduced in the second author’s Habilitationsschrift, published as
Schindler [12], where it is shown that K exists if 0 |• does not exist. The existence of 0 |• is equivalent
to the existence of indiscernibles for a proper class model with a proper class of strong cardinals.
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It follows from [12, Corollary 1.3] together with coherency that

K1 |� β is strong up to α, as witnessed by extenders
on the EK1 − sequence,

and therefore the same holds in K. �

From now on, by strong cardinal we understand strong cardinal, as witnessed
by extenders on the sequence.

Suppose that there are exactly n strong cardinals in K, and (by Theorem 1)
that V is closed under sharps. We claim that there is a set forcing extension of
the universe admitting a �

˜

1
n+3-well-ordering of the reals.

Set δ = 0 if n = 0, and otherwise let δ be the largest K-cardinal κ such that
K |� κ is a strong cardinal.

Claim. There is a strong limit singular cardinal λ such that λ+ = (λ+)K, δ < λ,
and for all κ < λ, κ is a strong cardinal in K‖λ iff κ is a strong cardinal in K.

Proof. By the covering lemma ([12, Theorem 8.18], which really follows from
[8,9]), for any β ≥ ω2, cf(β+K) ≥ |β|. In particular, for any singular λ, λ+ =
(λ+)K.

Now the result is easy. Let o(α), for α an ordinal, denote the Mitchell order
of α in K,

o(α) = ot
{

ν:Eν is total on K and cp(Eν) = α
}

,

so o(α) ∈ ORD iff α is not a strong cardinal. Let λ > δ be strong limit singular
and closed under β �→ o(β). We are done, once we verify that for β a strong
cardinal in K, the lengths of the extenders in K‖λ with critical point β are
unbounded in λ. But this is clear: If β is a strong cardinal in K, then it is a strong
cardinal as witnessed by extenders on E, and [12, Corollary 1.3] shows that for
any cardinal α > (β+)K, both the lengths and the indices of extenders on E

witnessing that β is < α-strong are cofinal in α. In particular, this holds for λ, so
K‖λ |� β is a strong cardinal. �

Fix λ as in the claim. The key to most results involving simply definable well-
orderings of the reals is to use almost disjoint forcing. This is what we do here,
in a fine structural context. First, we need a projectively definable uncountable
sequence of almost disjoint reals.

Claim. There is a set forcing extension of the universe that collapses λ to ω while
preserving ν := λ+ and where, moreover, HC = Lν[E, A] for some A ⊆ λ+.

Proof. By forcing with Coll(ν, 2λ) if necessary, we may assume 2λ = λ+. Now
proceed as in the proof of Theorem 1. �

Call V1 the universe obtained in the claim.
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Claim. There is a set forcing extension of V1 preserving ν(= ω
V1
1 ) where there

is a real r such that HC = Lν[E, r].
Proof. Exactly as for the claim in the proof of Theorem 1, with K instead of
L[r]. �

Recall that δ < λ is the largest strong cardinal of K. Let V2 be the universe
obtained in the claim, and work in V2. The following key lemma provides the
optimal complexity for the well-ordering we are to obtain.

Lemma 1. Lν[E] is 
1
n+3(s) in the codes, where s ∈ R codes K‖δ.

Proof. This follows from Schindler’s arguments in [5]. See Theorem 3.6 there
and the comment after the proof of Theorem 3.5. �
Remark 2. In detail, the claim states that {r ∈ R:r codes M � JK

ωV
1
} is projective.

As usual, P̄ � Q̄ iff P̄ is an initial segment of Q̄.

It now follows that in V2 the reals admit a 
1
n+3(r, s)-well-ordering, where

r and s are as above. Namely, K[r] = L(K ∪ {r}) so R
V2 = R

K[r] admits a
natural well-ordering, derived from the order of constructibility (closing under
terms for Gödel operations) and the natural well-ordering of K. More carefully,
K[r] = K[ŝ][A][r], but ŝ is recursive in r and A is easily definable from r and A,
which in turn is easily definable in K[ŝ] from ŝ and a sequence of sets locally
definable in K‖ω1. Unfolding this construction, the terms produced by Gödel
operations only require to be (hereditarily) evaluated in elements of K‖ω1 and
the real r. So we obtain a well-ordering by only listing those terms that produce
reals, and avoiding repetitions. Since the terms are naturally well-ordered, we
only need to see how difficult it is to identify K‖ω1 inside K[r]. Lemma 1 tells
us that it is 
1

n+3(s), and we are done. ��
Remark 3. If there is no inner model with a strong cardinal, then by [11] there
is a reasonable forcing extension of the universe with a �

˜

1
3- well-ordering of R.

It is not known whether Theorem 2 can be obtained in general (when there is
at least one but only finitely many strong cardinals in K) if we restrict ourselves
to extensions by set sized reasonable forcing.

The theorem can be strengtened in a straightforward way: say that a set x is
adequate iff there is no inner model with x as an element and ω many strong
cardinals above x (i.e., above rk(x)). If x is adequate, then Kx, the core model
built over x using x-mice, exists. Thus, we can weaken the hypothesis of Theo-
rem 2 to: suppose there is an adequate x. And choose n as in the conclusion of
the theorem to be minimal such that there is an adequate x with Kx |� There are
exactly n strong cardinals (above x). This may indeed reduce the complexity of
the forced well-ordering. For example, consider V = L[r], where we start with
K containing, say, exactly five strong cardinals, and r is a real obtained by doing
Jensen coding over K, so K[r] = L[r]. Then KL[r] exists and has exactly five
strong cardinals (by a straightforward comparison argument—it must in fact be
the case that K = KL[r]) but Kr = L[r] is not even closed under sharps.
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4 The strength of projective well-orderings

In this section we show that the complexity of the well-orderings obtained in
Theorem 2 is in general best possible. This follows from arguments due to
Woodin, see [13] for further details.

Obviously, no �1
2-well-ordering is possible, unless R ⊂ L. By [7], no �

˜

1
2-well-

ordering is possible, unless R ⊂ L[r] for some real r. In particular, CH must
hold.

Fact 1. If V is closed under sharps, then there is no set generic extension with a
�
˜

1
2-well-ordering of R.

Proof. If V is closed under sharps, then so is any set generic extension. Let G
be generic over V for some forcing notion P. For any real r in V[G], r� /∈ L[r],
so by Mansfield’s result [7] there is no �1

2(r)-well-ordering of R
V[G] in V[G].

��
Woodin’s result correlates levels of setgeneric projective absoluteness with

the existence of inner models for strong cardinals. The base case is slightly
different from the rest, and we present in some detail a proof of it that does not
make use of the Martin–Solovay tree.

Let � be a class of formulas. By �-generic absoluteness we mean the asser-
tion that whenever P ∗ Q̇ is a two-step iteration of set forcings, x ∈ R

VP

, and
φ ∈ �, then VP |� φ(x) iff VP∗Q̇ |� φ

(

x̌
)

.

Theorem 3 (Martin, Solovay; Woodin). The following are equivalent:

1. V is �1
3-absolute.

2. V is closed under sharps.

Proof. (1. ⇒ 2.) Suppose X is a set of ordinals such that X� does not exist, so
there is δ > sup X such that δ+ = (δ+)L[X]. In VColl(ω,δ), let x be a real coding X
and δ, so ω1 = ω

L[x]
1 . Notice that this is a �1

3(x)-statement, and that it obviously
fails in VColl(ω,δ+). It follows that V is not �1

3-absolute.
(2. ⇒ 1.) The usual way of proving this is via the Martin–Solovay tree. We

provide here a slightly different argument.
Suppose that V is closed under sharps. Recall that for a set of ordinals X, the

existence of X� is equivalent to the assertion that there is an X-mouse of the
form M = (Jα[X], ∈, X, U) such that M |� There is a largest cardinal κ and U is
a κ-complete normal measure on κ . We will refer to such a (unique) mouse as
X� in what follows.

Let ϕ be �1
2. We claim that if there is a forcing P such that in VP there is

a real x such that VP |� ϕ(x), then there is such a real in V. By Shoenfield’s
absoluteness, it follows that V is �1

3-absolute.
Fix such a P which we may assume is a set of ordinals, so we can choose X

such that P ∈ X�. Let T be the tree of attempts to build a quintuple (N, Q, g, y, π)

such that
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(a) N is a countable transitive premouse.
(b) Q ∈ N is a partial order.
(c) g is Q-generic over N.
(d) y is a real in N[g] and N[g] |� ϕ(y).
(e) π : N → X� is elementary, and π(Q) = P.

Then T is ill-founded in VP, and therefore in V. Let (N, Q, g, y, π) ∈ [T]V .
Then (because of π) N is iterable. N[g] is a Y-premouse (for some Y), and the
iteration of N lifts to the iteration of N[g], so N[g] is actually iterable. Since
N[g] |� ϕ(y), there is therefore a class-sized model N such that N |� ϕ(y). By
Shoenfield’s absoluteness, V |� ϕ(y) as well, and we are done. ��

The corresponding result on absoluteness of higher levels of the projective
hierarchy is given by:

Theorem 4 (Woodin). If there are n > 0 strong cardinals and κ is larger than all

of them, then �1
n+3-generic absoluteness holds in VColl(ω,22κ

). ��
This is proved by induction, starting with the base case provided by Theorem

3. The key is the following theorem, see ([13], Section 3):

Theorem 5 (Woodin). Suppose A ⊆ R × R is λ-universally Baire as witnessed

by T, T ′. Let κ be a strong cardinal, with 22κ
< λ. Then in VColl(ω,22κ

), p[A] is
λ-universally Baire. ��
Corollary 2. Assume there are n > 0 strong cardinals. Then there is a forcing
extension of V such that there is no �

˜

1
n+2-well-ordering of the reals in any further

set generic extension.

Proof. Let κ be larger than the first n strong cardinals. The statement “There is
a �

˜

1
n+2-well-ordering of R” is �1

n+3 and it fails in VColl(ω,22κ
), since Coll(ω, 22κ

)

is homogeneous. ��
Corollary 3. The following theories are equiconsistent (over ZFC):

1. There are ω strong cardinals.
2. There is no set forcing extension of V with a projective well-ordering of the

reals.
3. Projective absoluteness.

Proof. (Con(ZFC + 1.) ⇒ Con(ZFC + 3.)) By Woodin’s Theorem 4 if λ =
supn κn where κ0 < κ1 < . . . are strong cardinals, then projective absoluteness
holds in V1 = VColl(ω,λ).

(3. ⇒ 2.) Since homogeneous forcing destroys any projective well-ordering,
projective absoluteness ensures that no set forcing extension of V1 can have a
projective well-ordering of R.

(Con(ZFC + 2.) ⇒ Con(ZFC + 1.)) This is immediate from Theorem 2. ��
The equiconsistency of 3. and 1. in Corollary 3 was already known, and it is

the content of Hauser’s Habilitationsschrift, see [3].
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5 Reasonable extensions

Recall that a forcing P is reasonable iff for all α ≥ ω1, Pω1(α)V is stationary in
Pω1(α)VP

. In [11] the second author showed that if there is no inner model with
a strong cardinal, then there is a reasonable forcing extension of the universe
where the reals admit a �

˜

1
3-well-ordering. This was based on a reshaping result

in the lack of strong cardinals, that we now generalize slightly.
Assume that K exists, and K |�There is exactly one strong cardinal. Let κ

denote the strong cardinal in K, and suppose κ < ωV
1 . Then we can proceed as in

[11]: Find in V a singular cardinal δ of cofinality ωV
1 whose successor is computed

correctly in K, and such that the only overlaps in the sequence of extenders
E = EK come from extenders with critical point κ . Then we can collapse δ to
ωV

1 and find in the extension a set A ⊆ ω1 such that Hω2 = K‖ω2 [A](= Jω2 [E, A]).
We may assume A = Ao ⊕ Ae with Ao coding K‖δ.

Then K‖ω2 is the stack of mice M which collapse to δ and such that only
extenders that overlap δ have critical point κ , i.e., the stack of all those sound
M such that the phalanx (〈K, M〉 , κ+) is iterable, and ρω(M) ≤ δ.

Then we can “reshape”: Call an ordinal ξ typical iff Ao ∩ ξ codes a model K̄
such that there is a sound M � K̄ such that (〈K, M〉 , κ+) is iterable and ρω(M)

is at most the height of K̄.
Consider the poset P consisting of pairs (p, c) where for some countable α,

c is a club in α consisting of typical ordinals, and p : α → 2 is such that for all
ξ ∈ c ∪ {α} and definably over M[A ∩ ξ , p�ξ ], the statement “ξ is countable”
holds. P is ordered as usual, and usual arguments show it is reasonable.

This forcing adds a set B. Let C = A ⊕ B. Now use almost disjoint forcing to
add a real a such that for any ξ < ωV

1 , ξ ∈ C iff a is almost disjoint from aξ , where
〈

aξ:ξ < ωV
1

〉

is the almost disjoint sequence of reals such that aξ is definably
over M[C ∩ ξ ] the first subset of ω almost disjoint from each aη, η < ξ . Here, M
is as above. The sequence is well defined and independent of the choice of mice
M since (by the standard coiteration argument) any two such M are lined up.

In the resulting extension, the reals admit a �
˜

1
4-well-ordering: Let “M is

jointly iterable with K” denote the statement that M is sound and

(〈K, M〉 , κ+)

is iterable. This is a �1
3-condition on M. Then we can define a well-ordering by

stating that x < y iff there is a stack of mice M as above such that for some M

in the stack, x, y ∈ M and x <M y. This is a �1
4(a)-well-ordering.

The same idea works if there are finitely many strong cardinals in K and all
of them are below ωV

1 . However, even if K has exactly one strong cardinal, we
do not know if there is a reasonable reshaping of the universe giving a similar
well-ordering of the reals of the extension if the cardinal lies above ωV

1 .
In the case where K has exactly one strong cardinal κ , and κ = ωV

1 , then we
can extend the argument above, as long as (κ+)K = ωV

2 .
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6 Some questions

Theorem 2 produces boldface well-orderings, so there is an obvious question
whose answer is still missing, for example:

Question 1. Assume ¬0�. Is there a (set) forcing extension of V with a (light-
face) �1

3-well-ordering of R?

As observed by the second author in [11], if R is closed under sharps, there
is no inner model with a strong cardinal, and there is a �1

3(r)-well-ordering of
R for some real r, then R = R

Kr where Kr is the core model built over r using
r-mice. It follows in particular that CH must hold. The result does not hold in
the presence of strong cardinals: If a is a real, Ka exists, and does not contain
inner models with Woodin cardinals, then R

Ka admits a �1
3(a)-well-ordering,

even if the reals of no forcing extension of V do.
It is also not the case that CH must hold if there is an inner model with

0 < n < ω strong cardinals, and there is no inner model with n + 1 strong
cardinals, but there is a �

˜

1
n+3-well-ordering of R. To see this, let K denote the

least inner model with n strong cardinals. Add ω2 many Cohen reals. Then
force a well-ordering of the reals à la [2]. Both forcings have the c.c.c. and in
the extension there is a �

˜

1
4-well-ordering of R, for the same reason as there is a

�
˜

1
3-well-ordering of R if the same construction is carried out over L, as argued

in [2].

Question 2. Suppose n > 0, there is an inner model with n strong cardinals, and
there is no inner model with n + 1 strong cardinals. Is there a reasonable set
generic extension of the universe with a �

˜

1
n+3-well-ordering of R?

A much deeper property of theory 2. in the statement of Corollary 3 above
seems untractable with current fine structural techniques.

Question 3. Is it true that projective absoluteness holds iff there is no forcing
extension of V with a projective well-ordering of the reals?

This seems to require a level-by-level argument correlating projective abso-
luteness and the existence of Universally Baire tree representations for projec-
tive sets.
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