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PROJECTIVE WELL-ORDERINGS AND BOUNDED FORCING AXIOMS

ANDRÉS EDUARDO CAICEDO

Abstract. In the absence of Woodin cardinals, fine structural inner models for mild large cardinal

hypotheses admit forcing extensions where bounded forcing axioms hold and yet the reals are projectively

well-ordered.

The main result of this paper is an improved and revised version of a theorem
in Chapter 2 of the author’s dissertation [5] written under the supervision of John
Steel and Hugh Woodin at U.C. Berkeley.

§1. Introduction. By MA we mean in this paper MA + ¬CH. Harrington [15,
Theorem B] showed that MA is consistent with the existence of a Σ

e

1
3-well-ordering

of the reals. More precisely, there is a forcing extension of L where MA holds and
whose reals admit a well-ordering of the claimed complexity. Harrington’s result
is optimal in the sense that Σ

e

1
2-well-orderings are incompatible with MA; this is an

immediate corollary of the following classical result, see [17, Theorem 25.39]:

Theorem 1.1 (Mansfield). Let a ∈ R. The reals admit a Σ12(a)-well-ordering iff
R ⊂ L[a]. In particular, if there is a Σ

e

1
2-well-ordering of R, then CH holds. 2

There is a sense in which Harrington’s theorem is not optimal, namely the well-
ordering in [15] is not lightface. This is not really an obstacle:

Theorem 1.2 (Friedman [10, Theorem 8.51]). There is a forcing extension of L
that preserves ù1 in whichMA holds and there is a Σ13-well-ordering of the reals. 2

In this paper we strengthen Harrington’s result in a different direction.
Recall:

Definition 1.3 (SPFA(c)). The semiproper forcing axiom holds restricted to
posets of size at most c, i.e., if |P| ≤ c, P is semiproper, and D ⊆ P (P) is a
collection of at most ℵ1 many dense subsets of P, then there is a D -generic filter
G ⊆ P, i.e.,

∀D ∈ D (D ∩ G 6= ∅).
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Definition 1.4 (Goldstern, Shelah [13, Definition 0.1]).

1. The bounded semiproper forcing axiom, BSPFA, holds iff whenever P is
semiproper and D is a collection of at most ℵ1 many predense subsets of P,
each of cardinality at most ℵ1, then there is aD -generic filter G ⊆ P.

2. BSPFA++ holds iff, with P,D as above, if in addition a sequence

〈ôα : α < ù1〉

of P-names for stationary subsets ofù1 is given, then there is aD -generic filter
G ⊆ P such that for all α < ù1,

(ôα)G := {â < ù1 : ∃p ∈ G (p 
 â ∈ ôα)}

is stationary in ù1.

Definition 1.5 (Woodin [32, Definition 5.12]). Let S and T be stationary, co-
stationary subsets of ù1. øAC(S, T ) is the following statement: Let NSù1 be the
nonstationary ideal on ù1. Let P = P (ù1)/NSù1 . Then there is an α < ù2 such
that whenever G is a P-generic filter over V , then

S ∈ G iff α ∈ j(T ),

where j : V → (Ult(V,G), ∈̃) ⊆ V [G ] is the generic ultrapower embedding (and,
as customary, we identify the standard part of a model with its transitive collapse.)
øAC is the statement that øAC(S, T ) holds for any S and T stationary, co-
stationary subsets of ù1.

Definition 1.5 can be restated without mentioning the generic: Given S and T as
above, the condition on α is equivalent to

[S]NSù1 = bdbdα ∈ ̇(T )ceceRO(P (ù1)/NSù1 ),

where ̇ is with Boolean value 1 a P (ù1)/NSù1-name for the generic ultrapower
embedding.
In turn, this is equivalent to stating the existence of a bijection ð : ù1 → α and of
a club C ⊆ ù1 such that

S ∩ C = {â ∈ C : ot(ð“â) ∈ T}.

Theorem 1.6. Let L[E ] be a fine structural inner model with a strong cardinal but
without inner models withWoodin cardinals. Then there is a forcing extension ofL[E ]
where the following hold :

1. SPFA(c) + BSPFA++.
2. øAC.
3. All ∆

e

1
3-sets of reals are Lebesgue measurable and have the property of Baire.

4. There is a projective lightface (in fact, Σ16) well-ordering of R.

Remark 1.7. 1. Since øAC (as well as BPFA, the bounded proper forcing ax-
iom) implies c = ℵ2 (see [32, Lemma 5.15]), it follows that MA holds in the
extension described in the theorem.

2. That a strong cardinal suffices to obtain SPFA(c) by forcing was known before,
see [32, Remark 2.48]. Originally, this was somewhat surprising, given the
equivalence between SPFA and MM. Woodin was first to show that SPFA(c)
is strictly weaker than MM(c). For example, [32, Theorem 9.73] states that
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MM(c) implies Projective Determinacy and is therefore in consistency strength
strictly above SPFA(c).

3. In fact, a strong cardinal is much more than necessary, and we just use it
here to speed up the argument. However, notice that if there is a strong
cardinal, then all sets have sharps, and we have the following result (see [23]
or [6, Theorem 3]).

Theorem 1.8 (Martin, Solovay). If all sets have sharps, thenΣ13-absoluteness

holds, i.e., for every Σ13-formula ϕ(~x), any two-step forcing notion P ∗ Q̇, and

any ~r ∈ RV
P

,

V P |= ϕ(~r)⇔ V P∗Q̇ |= ϕ
(

~̌r
)

. 2

4. A well-known forcing axiom of a different kind than the ones we have stated
above is the Open Coloring Axiom OCA. See [11] for a thorough treatment
of this axiom. OCA was defined by Todorcevic, see [31, Theorem 8.0 and
subsequent comments]. It holds in the model of Theorem 1.6 since it is a
consequence of SPFA(c), see for example [11, Proposition 43].

5. For Γ a (boldface) pointclass let Γ(L ) and Γ(M ) denote respectively the
statements that Γ-sets of reals are Lebesgue measurable and that they have the
property of Baire. Recall that Martin and Solovay [24, §4] proved that MA

implies Σ
e

1
2(L ) and Σ

e

1
2(M ); this also follows from the existence of sharps for

reals (see for example [4, Corollary 9.3.2]). Judah has shown (see for example
[19, Theorem 4.4]) thatMA implies neither ∆

e

1
3(L ) nor ∆

e

1
3(M ).

6. It is a folklore result that no well-ordering of the reals is Lebesgue measurable,
see [5, Theorem 1.2]. Since any Σ

e

1
3-total ordering is ∆

e

1
3, it follows that the

complexity of the well-ordering cannot be improved to be Σ
e

1
3. It is open

whether the complexity of the well-ordering can be improved to be Σ
e

1
4 or

even Σ
e

1
5.

We are appreciative of the referee’s useful comments, which helped us to present
the proof in a more clear and detailed manner. Thanks are also due to Benjamin
Miller for stylistic comments. Of course, all inaccuracies and mistakes that remain
are entirely the author’s fault.

§2. Fine structural prolegomena. Our fine structural terminology is standard,
we follow the Mitchell-Steel style. As requested by the referee, we have included
some references and explanations, we isolate them in this section to avoid breaking
the flow of the proof in §3. Due to the technical nature of the notions involved,
these explanations are unfortunately rather vague, and any interested reader should
consult the works cited for precise statements and definitions. The basic reference
for fine structure is Jensen’s seminal work [18]; for a modern and streamlined
presentation we suggest [29]. Fine structural models are defined inductively by
stages, much like L is defined. Given a predicateA, the stages in the construction of
L[A] are denoted by JAα , these are transitive structures, ORD∩ JAα = ùα, J

A
α ⊂ JAâ

for α < â , and they resemble closely the L-hierarchy in that JAα+1 ∩ P (J
A
α ) =

Def(JAα ); they are better behaved in the sense that they are closed under elementary
operations like forming ordered pairs, see [18, §2] or [29, §1].
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Mitchell-Steel models L[E ] are usually called weasels; the set models that serve
as stages of the construction of a weasel are usually called mice. A few preliminary
notions are required before we can state what a mouse is. The first such notion
is that of potential premouse, it is introduced and defined in [26, Definition 1.0.5],
which builds on the notion of good extender sequence introduced in [26, Definition
1.0.4]; unfortunately, this definition is incomplete. The definition is completed
in [28, Definition 2.4], or see the excellent [30] where the notion is renamed fine
extender sequence in [30, Definition 2.4]. A transitive structure M is a potential
premouse (ppm) iff it is a structure of the form (J Eα ,∈,E �α ,Eα) where E is a fine
extender sequence, see [26, Definition 1.0.5], [30, Definition 2.6]. It is customary to
denoteM by J Eα . For â ≤ α it is also customary to denote J Eâ by J

M
â . Without

going into details, a fine extender sequence is a sequence E such that for each α in
its domain, Eα = ∅ or else Eα is a (κ, α)-extender over J Eα for some κ ∈ J Eα .
Two basic fine structural objects related to a potential premouse M are its first
standard parameter p1(M ) and its Σ1-projectum ñ1(M ), see [30, Definitions 2.12
and 2.13]. Potential premice M = (J Eα ,∈,E �α ,Eα) can be nicely coded by their
Σ0-code C0(M ). We will not define this structure here, but we point out that it has
the form

(

JEâM ,∈,E �âM ,E
∗
âM , ì̇

M , í̇M , ã̇M
)

for appropriately defined predicates ì̇M , í̇M , ã̇M and ordinal âM , and where E ∗
âM

is a “nice” predicate coding EâM , see [30, Definition 2.11]. C0(M ) is amenable,
which makes it better suited for fine structural analysis thanM itself. It is basically
harmless to identify M with its Σ0-code, and we have done so in some of the
(sketched) definitions in the paragraphs below. The Σ1-projectum of M is the
least ordinal α such that there is a set A ⊆ α such that A /∈ C0(M ) but A is
Σ1-definable over C0(M ) with parameters. These parameters can be taken to be
decreasing sequences of ordinals, so they are well-ordered lexicographically. The
least parameter from which such a setA as above can be defined is the first standard
parameter ofM .
The first core ofM is the structure

C1(M ) = H
C0(M )
1

(

ñ1(M ) ∪
{

p1(M )
})

,

where H1 denotes the transitive collapse of the corresponding Σ1-hull, see [30,
Definition 2.14]. Using these notions the concepts of 1-solidity and 1-soundness of
M can be defined (for exampleM is 1-sound iff it is 1-solid and C1(M ) = C0(M )),
see [30, Definitions 2.15 and 2.16]. We will not explain here what solidity means. By
a delicate induction that occupies a significant part of [26], the concepts of n-solid
and n-soundpotential premice can then be defined, see [26, Definition 2.8.3], [26, §8]
and [28, §3]. Very roughly speaking, soundness ofM = J Eα entails the following:
Suppose that a subset X of an ordinal κ belongs to JMâ+1 \ J

M
â . Then there is a

surjection f
·
: κ → JMâ in J

M
â+1. Moreover, for some m, X must be Σm-definable

overJMâ from parameters inJ
M
â ; ifm ≤ n, then such a surjection f can be chosen

to be Σm-definable as well.
A potential premouse is sound or ù-sound iff it is n-sound for all n < ù, see
[30, Definition 2.17]. In Mitchell-Steel modelsM , all levels J Mα are ù-sound. This
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implies that fully elementary Skolem hulls of M are ù-sound as well. Structures
that are not ù-sound can appear, however, when forming ultrapowers, see [26, §4],
especially [26, Lemmas 4.5 and 4.6]; a remark indicating how soundness fails is
unfortunately incomplete in [26], for this see [30, Lemma 2.23]. It is not hard to see
that if M is countable then ù-soundness of M is an arithmetic statement about x
for any real x codingM ; it is of course not expressible by a first order sentence in
M itself.
The definitions of soundness and solidity are such that a potential premouse M
needs to be at least (n − 1)-solid in order to even define its n-projectum and its n-
standard parameter, in terms of which n-solidity and n-soundness are then defined.
If M is n-solid for all n < ù (for example, if M is ù-sound) then the sequence
(ñn(M ) : n < ù) of projecta of M is well-defined and non-increasing, so its limit
(eventual value) exists. This ordinal is denoted ñMù , see [30, Definition 2.17].
A premouse is a potential premouse all of whose proper initial segments are ù-
sound, see [30, Definition 2.19]. Given a potential premouseM = J Eα , a potential
premouse N is an initial segment ofM iff N = JMâ for some â ≤ α. If â < α we
say thatN is a proper initial segment ofM , see [30, Definition 2.18].
A mouse is an iterable premouse J Eα . Iterability is a delicate notion, closely
related to the large cardinal strength the sequence E codifies. If J Eα is countable,
the most generous iterability notion defined in [30] is (ù,ù1, ù1 +1)-iterability, see
[30, Definition 4.3]; this is a Σ23 notion, far too complicated for our present purposes.
In the absence ofWoodin cardinals, there is a Π12 notion of iterability that suffices in
the sense that iterable premice are comparable, see for example [25], the introduction
to which we strongly recommend. For a general definition of comparison see for
example [30, Theorem 3.11]; we say that two sufficiently iterable premice M and
N are comparable iff there are iterations ofM and N producing final models M α

and N â one of which is an initial segment of the other. By the mouse condition
we refer to the fact that iterability of a countable premouse M is Π12-definable in
any real x coding M . To say that a real x codes a potential premouse M is itself
a Π11 condition, being the conjunction of a first order statement about the model
coded by x and the statement that this model is well-founded, see [26, Lemmas 2.5
and 3.3] and [28, Lemmas 2.5 and 2.6 and subsequent remarks]. In Mitchell-Steel
models M , all levels JMα are iterable; more generally, if M is a mouse then all its
initial segments are iterable as well.
We close this section by quoting two results from [30] that we will have occasion
to use in §3. The first is a very useful tool to show that certain objects are unique,
the second is a condensation theorem.

Theorem 2.1. [30, Corollary 3.12] Let M and N be ù-sound mice such that
ñMù = ñ

N
ù = ù. ThenM is an initial segment ofN or vice versa. 2

Theorem 2.2. [30, Theorem 5.1] Let M be an ù-sound mouse. Suppose that
ð : N →M is elementary and cp(ð) = ñNù . Then either

1. N is a proper initial segment ofM , or
2. There is an extender E on the extender sequence of M such that E has length
ñNù andN is a proper initial segment ofUlt0(M , E). 2

In the statement of Theorem 2.2, Ult0 denotes the standard internal ultrapower,
see [30, §2.4].
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§3. The proof. This section is devoted to the proof of Theorem 1.6. The proof
divides in a natural way into four parts: First we define for κ a strong cardinal, a
revised countable support iteration Pκ of length κ of semiproper forcings, and show
that

V Pκ |= SPFA(c) + BSPFA++.

Second, for anymeasurable cardinal î and any S and T stationary, co-stationary
subsets of ù1, we define a semiproper forcing Q of size î that forces øAC(S, T ) to
hold. Notice that once it holds, øAC(S, T ) is preserved by any furtherù1-preserving
extensions—or stationary set preserving, if we want S and T to stay stationary, co-
stationary in the extension. We use this to argue that the construction of part one
satisfies

V Pκ |= øAC.

This elaborates on an argument of Woodin [32, Lemma 10.95] that we also improve
(since the forcing axiom we are assuming is strictly weaker than BMM.) From øAC

it follows that a well-ordering of R can be easily defined from an infinite sequence
of pairwise disjoint stationary sets.
Third, we use Σ13-absoluteness and results of Judah [19] to argue that

V Pκ |= ∆
e

1
3(L ) and ∆

e

1
3(M ).

Finally, suppose L[E ] is as in the hypothesis of the theorem, ë is strong in L[E ]
and P = (Pë)

L[E ]. Then

L[E ] |= There is a ∆13-in-the-codes sequence (Sn : n < ù) of disjoint

stationary subsets of ù1.

By Σ13-absoluteness between L[E ] and L[E ]
P, such a sequence is still ∆13-definable

in L[E ]P, and by definition of P the Sn are still stationary in ù1. A calculation then
shows that

L[E ]P |= There is a Σ16-well-ordering of the reals,

completing the proof.

Remark 3.1. That BSPFA is strictly weaker than BMM is the content of [1, The-
orem 3.5]. In [1, Corollary 2.3] it is shown that the statement of [32, Lemma 10.95]
can be improved by replacing the measurable with a cardinal κ satisfying the Erdős
property κ → (< ù1)

<ù
2ù1 , see [1] for the relevant definitions. Schindler [27, The-

orem 1.1] shows that even in consistency strength BMM is significantly stronger
than BSPFA. Namely, BSPFA is equiconsistent with the existence of Σ1-reflecting
cardinals, while BMM implies that every set belongs to an inner model with a strong
cardinal.

Now we proceed to the details:

For revised countable support (RCS) iterations, the reader is advised to con-
sult [8].
Let κ be strong. The key to defining Pκ is an appropriate version of Laver
functions for strong or locally strong cardinals due to Shelah and Gitik, see also
[14, Theorem 6].
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Lemma 3.2 (Gitik, Shelah [12, Lemma 2.1]). Let κ be strong. Then there is `
·
:

κ → Vκ such that for every x and every ë ≥ |TrCl(x)|, there is a (κ, ë)-extender
E which is ë-strong and such that jE(`)(κ) = x, where jE : V → Ult(V,E) is the
ultrapower embedding given by E. 2

Actually, the result in [12] is based on a notion different from that of a (κ, ë)-
ë-strongextender: that of a (κ, ë)-normalultrafilter (asdefined in [3, Definition2.3])
but the proof adapts in a straightforwardway. In fact, in the original argument given
in [22] the use of supercompactness can be replaced with just strongness. Basically,

Laver assumes the result fails, and picks counterexamples for all f
·
: κ → Vκ. Let

ëf be a minimal counterexample to such a function f in the sense that ëf is least
such that there is x with ëf ≥ |TrCl(x)|, but there is no (κ, ëf)-ëf-strong extender
E witnessing jE(f)(κ) = x. Then consider j : V → M , where j comes from a
(κ, ë)-ë-strong extender for ë bigger than all the ëf . Laver uses ë-supercompactness
to argue that ëf is still a counterexample to f in M , from which via a reflection
argument a contradiction is easily reached. But all we need is that M contains
enough of V , so it sees that there are no (κ, ëf)-ëf-strong extenders as required.
We can avoid the argument by contradiction and instead proceed directly, defining
` inductively. Such an argument is presented in [14, Theorem1]. The naı̈ve approach
has the disadvantage of requiring a global choice function, but such a predicate
can be added by proper class forcing without adding any new sets; the proof in
[14, Theorem 1] avoids this step by a reflection argument. See also [14, Theorem 2
and Observation 3] for more on this issue.
The argument works locally, so appropriate Laver functions exist if κ is only
è-strong for some è, see for example [14, Corollary 7].
Now we can apply the standard proof of the consistency of SPFA, but working
with κ strong: An RCS iteration 〈Pα : α ≤ κ〉 is defined, so the αth iterand is

a Pα-name Q̇α for a semiproper forcing such that V Pα∗Q̇α |= |Pα | ≤ ℵ1, and if
`(α) = (Q̇,D ), where

• ` is our Laver function,
• Q̇ is a Pα-name for a semiproper forcing such that V Pα∗Q̇ |= |Pα | ≤ ℵ1, and
• D is a Pα-name for a sequence of ã < κ dense subsets of Q̇,

then Q̇α is defined as Q̇.
Forcing with Pκ is semiproper, see [8, Theorem 4.1], so ù1 and its stationary
subsets are preserved. It is κ-cc, because at inaccessible points direct limits are
taken in RCS iterations, see [16, Theorem II.7.9].

Lemma 3.3. V Pκ |= SPFA(c).

Proof. The usual proof of the consistency of PFA adapts (see [16, Theorem
III.6.7], [9, §1] or [8, Theorem 5.1]). Clearly, V Pκ |= κ = c = ℵ2. Let G be
Pκ-generic over V . In V [G ], let Q be semiproper, |Q| ≤ c, and let D be a sequence
of length< c of dense subsets ofQ. We must show that inV [G ] there is aD -generic
filter G ⊆ Q.
Let j : V →M be a witness to the 3-strength of κ, i.e.,M is transitive, cp(j) = κ
and Vκ+3 ⊂M . Then Pκ ∈M andQ,D ∈M [G ] (as names for them can be coded
by elements of Vκ+2). Choose j so, in addition,

j(`)(κ) = (Pκ-name for Q ∗ ˙
Coll(ù1, |Q|+),Pκ-name for D̃ )
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where letting A = ˙
Coll(ù1, |Q|+), if D = (Dα : α < ã) we set D̃ = (Dα × A:

α < ã). Notice that j(Pκ) = Pκ ∗ Ṡ for some name for a poset Ṡ, both in M and
in V .
We claim thatM [G ] |= Q is semiproper. To see this, we use the characterization
of semiproperness in terms of games (see [16, Definition III.7.7]):

Let Q be a forcing. Consider the following game of length ù between
players I and II , with I moving first: Player I plays a condition in Q,
and then they alternate, I playing Q-names for countable ordinals, and
II playing countable ordinals. II wins iff some condition extending the
one I played forces each name to be one of the ordinals played.

Q is semiproper iff II has a winning strategy.

Since Q is semiproper in V [G ], II has a winning strategy in V [G ]. Formally,
this is a definable class but it suffices to think of it as a function with domain, say,
nice names for countable ordinals. A nice name for a countable ordinal is defined
from a sequence of antichains. Since Vκ+2 ⊂ M , bothM [G ] and V [G ] agree on
what the nice names for countable ordinals are, and since in fact Vκ+3 ⊂ M , we
can ensure that II ’s winning strategy belongs to M [G ], since it can be coded as
a subset of the set of nice names for countable ordinals, a name for which can be
in turn coded in Vκ+3. The claim follows, and from the claim we see that in M ,

j(Pκ) = Pκ∗Q̇∗ ˙
Coll(ù1, |Q|+)∗Ṫ for some Ṫ and therefore inV , j(Pκ) = Pκ∗Q̇∗Ẇ

for some Ẇ.
Let H be a j(Pκ)-generic over V extending G , so H = G ∗ G ′ ∗ G ′′ where G ′

is Q-generic over V [G ]. Since Pκ is κ-cc, j lifts in V [H ] to ĵ : V [G ] → M [H ].
Since G ′ is essentially a subset of κ, we can without loss assume that ĵ“G ′ = G ′.
But since Vκ+2 ⊂ M , G ′ ∈ M [G ]. Clearly, ĵ“G ′ meets each j(Dα), α < ã , and
since ã < κ, ĵ(D ) = ĵ“D , so the filter generated by G ′ in j(Q) is ĵ(D )-generic. It
follows by elementarity that in V [G ] there is aD -generic filter. 2

Remark 3.4. The argument given shows that strength is more than is actually
needed. The function ` only needs to predict small objects, and it follows from the
proof that 3-strength of κ suffices.

Notice that the argument just given is soft enough that allows for additional
clauses, thus providing a method for showing the consistency of SPFA(c) together
with several other principles. For example, these clauses can be used to imple-
ment BSPFA by copying the argument in the proof of [13, Theorem 2.11], re-
placing “countable support iteration” with “RCS iteration” and “proper” with
“semiproper”. Since strong cardinals are Σ1-reflecting, this argument works. That
in fact BSPFA++ holds in the extension can be ensured in a straightforward way
by adding an additional clause to requirements (1)–(6) in the proof of [13, Theo-
rem 2.11]. So, together with the iteration and the sequences of namesM

e
i as defined

there, we also have a list of names forù1-sequences of names for stationary sets, and
stipulate that they are met. We can order our list so each name appears stationarily
often, and this guarantees the sufficiently generic filters will guess them as desired.
This shows the required result:

Lemma 3.5. V Pκ |= BSPFA++. 2
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This concludes the first part of the proof. For the second one, we start with a
diversion:

Fact 3.6. Suppose thatBSPFA holds and that there is a measurable cardinal. Then
øAC holds.

Proof. This is like [32, Lemma 10.95]. Let S and T be stationary, costationary
subsets of ù1. We only need to verify the following: Let î be a measurable cardinal
and let Q be the forcing that collapses î to ù1 via a bijection ð : ù1 → î while
shooting a club C ⊆ ù1 such that

T ∩ C = {α ∈ C : ð“α ∈ S}.

Conditions in Q are closed initial segments of the intended bijection, and the order
is by extension. Then Q is semiproper (in [32, Lemma 10.95] the weaker claim is
made that it is stationary set preserving.)
In effect, let ç > î be sufficiently large and let X ≺ Vç be countable and contain
all relevant parameters. We can assume X ∩ ù1 ∈ T . Since î is measurable, X
can be expanded to a structure Y such that Y ∩ ù1 = X ∩ ù1 yet ot(Y ∩ î) ∈ S.
This can be easily achieved by standard arguments. For example, by iterating the
construction in [20, Lemma 1.1.21].
With Y as above, if p is the union of a Y -generic chain of conditions (i.e., a
descending ù-sequence of conditions in Y meeting every dense set in Y ), then
p ∪ {(Y ∩ ù1, ot(Y ∩ î))} is a condition in Q which is clearly X -generic, and
semiproperness follows. By our forcing axiom, øAC(S, T ) must hold. Since S
and T are arbitrary, we are done. 2

Similarly,

Lemma 3.7. With κ a strong cardinal and Pκ as above, V
Pκ |= øAC.

Proof. Just notice that the measurable cardinals are cofinal in κ and that given
S and T , stationarily often below κ the Laver function ` will predict a forcing like
the one described in Fact 3.6 to be used along the inductive construction of Pκ. An
easy bookkeeping gives now the result. 2

Remark 3.8. Before proceeding with the argument, it is worth pointing out that
a variation of the proof of Fact 3.6 allows us to give an easy forcing construction
of a model of club bounding starting with the optimal hypothesis. Recall that club
bounding is the statement that every function f : ù1 → ù1 is dominated on a club
by a canonical function (i.e., a function h : ù1 → ù1 such that for some α < ù2 and
some bijection g : ù1 → α, for all â < ù1, h(â) = ot(g“â).) It is a consequence of,
say, [21, Corollary 5.2], that an inaccessible limit of measurable cardinals suffices
to force a model of club bounding; even though [21] is probably the first printed
reference where this result appears, it is probably folklore and was known long
before [21], where a strengthening (its consistency with CH) is obtained. That
an inaccessible limit of measurable cardinals is precisely its consistency strength is
proved in [7, Theorem 1].
To see that an inaccessible limit of measurable cardinals suffices, notice that given
f : ù1 → ù1 and a measurable κ, an easy variation of the proof above shows that
the natural forcing adding a canonical function dominating f (with index κ) is
semiproper. By easy bookkeeping, if ë is regular and limit of measurable cardinals,
an RCS iteration of length ë of these forcings produces a model as desired.
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Since we will need this explicit definition, let us now recall how øAC can be used
to provide us with well-orderings of R.
Suppose (Sn : n < ù) is a sequence of disjoint stationary subsets of ù1. We
associate to each x ⊆ ù the set Sx =

⋃

{Si+1 : i ∈ x}. Notice Sx is stationary,
co-stationary. The ordinal ãx is defined from Sx as the least ã such that

[Sx ]NSù1 = bdbdã ∈ ̇(S0)ceceRO(P (ù1)/NSù1 )

where ̇ is as before. That ãx exists is precisely what øAC(Sx , S0) asserts.
Notice that if x and y are distinct subsets of ù, then ãx 6= ãy , as Sx 6=NSù1 Sy .
This completes the second part of the proof.

Now we proceed to establish ∆
e

1
3(L ) and ∆

e

1
3(M ). Fix Σ

1
3-formulas ϕ, ø with real

parameters such that

V Pκ |= ∀x ∈ R
(

ϕ(x)↔ ¬ø(x)
)

.

Since κ is weakly compact and Pκ is κ-cc, it follows by a well-known argument
that every real in V Pκ must appear at an intermediate extension V Pα , α < κ. We
may thus assume that the parameters in ϕ and ø are in V . By Σ13-absoluteness,
V |= ∀x ∈ R

(

ϕ(x) ↔ ¬ø(x)
)

, and the same holds for any intermediate model

betweenV andV Pκ . In any such model, the statement “{x ∈ R : ϕ(x)} is Lebesgue

measurable” is Σ
e

1
4 as it is equivalent to

“∃B Borel
(

ì
(

{x ∈ R :
(

x ∈ B ∧ ø(x)
)

∨
(

ϕ(x) ∧ x /∈ B
)

}
)

= 0
)

”

where ì is Lebesgue measure, and for Σ
e

1
n-sets A, the statement “ì(A) = 0” is Σ

e

1
n+1,

see for example [4, Lemma 9.1.2]. Similarly, the statement “{x ∈ R : ϕ(x)} has the

Property of Baire” is Σ
e

1
4 in V and in any V

Pα, 0 ≤ α ≤ κ.
By [19, Corollary 1.9], if Σ

e

1
2(L ) then

1 
Randomù1
∆
e

1
3(L ),

where Randomæ is the standard forcing notion for adding æ many random reals, and

1 
Add(ù,ù1) ∆
e

1
3(M ),

where Add(ù, æ) is the standard forcing notion for adding æ manyCohen reals. Now
notice that for some, in fact for cofinally many α < κ, V Pα |= Qα ∼= Randomù1 ∗ Ṡ

for some (name for a) semiproper forcing Ṡ in V ′ = V Pα∗ ˙Randomù1 . Since κ is still
measurable in V Pα , all reals in V Pα have sharps and therefore V Pα |= Σ

e

1
2(L ). It

follows thatV ′ |=“{x ∈ R : ϕ(x)} is Lebesgue measurable” and by Σ13-absoluteness,
the same holds in V Pκ .
The argument for the Baire property is the same, replacing Randomù1 with

Add(ù,ù1) and Σ
e

1
2(L ) with Σ

e

1
2(M ).

Since ϕ, ø and their parameters were arbitrary, ∆
e

1
3(L ) and ∆

e

1
3(M ) in V

Pκ follow,
and this completes the third part of the proof.

Now let L[E ] be as in the hypothesis of Theorem 1.6. We proceed to define in
L[E ] a ∆13-in-the-codes ù-sequence of stationary subsets of ù1. We show that this
sequence is still ∆13-definable in L[E ]

P, and argue that a Σ16-well-ordering of R can
be obtained from it.
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Figure 1. Defining S1.

First we define in L[E ] the sequence (Sn : n < ù). We verify they are stationary
in ù1. Since P is an RCS iteration of semiproper forcings, the stationarity of the
sets Sn is preserved when forcing with P.

Club many α < ù1 are a local ù1, α = ù
J Eä
1 , where J

E
ä |= ZFC. This club exists,

by reflection, since (say) there are inaccessibles.
For such an ordinal α, define âα as the least ordinal such that J Eâα+2 |= α is

countable. Obviously, âα > α. For ã ∈ (α, âα), let äã,α denote the order type of

{J Eä : ã < ä < âα , J
E
ä |= ZFC}.

Finally, let äα = limã↗âα äã,α . Since äã,α decreases as ã increases, äα exists.
For all α, äα = 0 or else it is an additively closed limit ordinal. If äα = 0, set
α ∈ S1. If äα = ùn where 0 < n < ù, set α ∈ Sn+1. Otherwise, set α ∈ S0.

Claim 3.9. Each Sn is stationary.

Proof. Suppose Sn is not. Let C be the first club in the order of definability
avoiding Sn. Let κ be least such that, settingM = J

E
κ , then

• M |= ZFC,
• C ∈M ,
• Let ô = ot{â < ùκ : JMâ |= ZFC and C ∈ JMâ }. Then either
– ô = 0 and n = 1, or
– ô = ùm , 0 < m < ù, and n = m + 1, or else
– ô ≥ ùù and n = 0.

Let X = Hull
M (∅), so X ≺ M , Sn ∈ X and since κ was chosen so C ∈ M ,

then C ∈ X . Let NX be the transitive collapse of X . Then, by [26, Corollary 2.6],
NX = J E

′

â for some countable ordinal â and fine extender sequence E
′,NX |= ZFC

and NX is pointwise definable without parameters in L[E ], although we make no
use of this last remark in this proof. Let α = ù1 ∩ X = ù

NX
1 . Then α is countable

in J Eâ+2 and therefore â = âα .

To see this, notice first that ñNXù = α. In effect, a new subset of α is definable
over NX by coding the theory of NX using the club CNX = C ∩ α as a parameter.
(That this is a new set follows from the minimality of κ; this is a standard and very
old fine structural argument, see [26, §2] for details of how this is done.) This shows
that ñNXù ≤ α. Since ñNXù is a cardinal ofNX , if strict inequality holds then ñ

NX
ù = ù,
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but this is impossible: Consider the elementary embedding ð : NX → M given by
the inverse of the transitive collapse of X . We have cp(ð) = α, so if ñNXù = ù
then ñMù = ù as well, which implies that M and in particular ù

M
1 is countable in

L[E ], a contradiction since ùM1 = supC = ù
L[E ]
1 . It follows that ñNXù = α. Since

M is an initial segment of L[E ], it is iterable and ù-sound; this allows us to use
the Condensation Theorem 2.2 from which it follows that either NX is a proper
initial segment ofM , in which case we are done since a new subset of α is definable
overNX and therefore belongs toJMâ+1 (namely, the theory ofNX in the parameter

CNX ), and from this α is seen to be countable by the next stage of constructibility,
by minimality of C , or else NX is a proper initial segment of an ultrapower of M
by an extender E on E with length α. But then PM (α) ⊇ PUlt0(M ,E)(α), and the
result follows as before.
By the requirement on ô and minimality of κ, it follows that α ∈ Sn . But then we
obtain a contradiction because C ∈ X , so α ∈ C . 2

It follows from the mouse condition that (Sn : n < ù) is ∆13-in-the-codes: α ∈ Sn
iff there is a real x coding n and a well-ordering of ù in order-type α, and there
is a real y coding a mouse M such that α ∈ M and M serves as a witness to the
membership of α in Sn; i.e., M |= ZFC, α is countable in M and M |= α ∈ Sn .
Equivalently, α ∈ Sn iff for every such x and every y coding such anM ,M certifies
this membership.
To see that this definition is correct, suppose that M1 and M2 are two mice
satisfying ZFC, that n < ù, that α is a countable ordinal in bothM1 andM2, and
that both M1 and M2 decide the question of membership of α in Sn , perhaps in
different ways. By definition of âα , ñ

N1
ù = ù, where N1 is one of J

M1

â
M1
α

and JM1
â
M1
α +1
,

and similarly ñN2ù = ù, where N2 is one of J
M2

â
M2
α

and JM2
â
M2
α +1
. By Theorem 2.1, one

of N1 and N2 is an initial segment of the other, and it follows immediately that
âM1α = â

M2
α and thatM1 andM2 agree with respect to the membership of α in Sn .

Remark 3.10. The same argument produces in L a partition of complexity ∆12.
The complexity increases once L[E ] admits Woodin cardinals.

Claim 3.11. (Sn : n < ù) is ∆13-in-the-codes in L[E ]
P.

Proof. This is a consequence of Σ13-absoluteness between the ground model and
its forcing extension. As shown above, the sequence is defined by two formulas ø0
and ø1, where ø0 and ¬ø1 are Σ13.
Absoluteness shows that the formulas still define the same sequence in the exten-

sion. For any α < ùL[E ]1 and any n < ù, there is a mouse in L[E ] witnessing α ∈ Sn
iff there is such a mouse in L[E ]P. Since ù1 is preserved in the extension, we are
done. 2

Nowwe use this sequence and argue fromøAC that a ∆16-well-ordering of the reals
can be defined. The well-ordering is simply

x < y iff ãx < ãy ,

where x 7→ ãx is as defined above.
Notice that RL[E ] has size ù1 and is a Σ13-set in L[E ]

P. This is a consequence
of absoluteness, considering a good ∆13-well-ordering of R in L[E ], see the proof
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of [32, Theorem 3.28]. By SPFA(c), we can talk about subsets of ù1 using this
sequence and almost disjoint forcing: Let φ(v) be a Σ13-formula describing the good
well-ordering of RL[E ] in the sense that for any real a, φ(a) states that a codes an
injective sequence of reals from RL[E ], for any c ∈ RL[E ] there is a d such that φ(d )
and c is one of the reals in the sequence coded by d , and for any a and b, if φ(a)
and φ(b) then the sequence coded by a is an initial segment of the one coded by b,
or vice versa. Using φ we can refer to the αth real of RL[E ] (for any α < ù1) in a
∆
e

1
3-way: c is the α

th real of RL[E ] iff there is a b such that φ(b), b codes a sequence
of length at least α + 1, and the αth real it codes is c, iff for all b coding such a
sequence and such that φ(b), c is b’s αth real.
Given a real z, we say that z codes Az ⊆ ù1 iff

Az = {ã : The ã th real of RL[E ] is almost disjoint from z}.

ThenAz is ∆
1
3(z)-in-the-codes, where we identifyAz with the set Âz of reals b coding

ordinals ã ∈ Az , and using almost disjoint forcing we see that any subset of ù1 is
Az for some z. By “x codes an ordinal” we mean the usual Π11(x) rendering of
the statement that (ù, x) is well-ordered, where x is seen as a binary relation by
identifying it with a subset of ù × ù in some recursive way. For such a real x, let
|x| denote the ordinal it codes. Recall that for x, y coding ordinals, the statements
|x| ≤ |y|, |x| = |y|, |x| 6= |y| and |x| < |y| are all ∆11(x, y). In what follows we
will have occasion to identify ù1 with ù1 × ù1 or with ù × ù1, R with R × R or
with ù × R, etc. All of these identifications are assumed fixed and recursive, and
all of them will be denoted by 〈·, ·〉. We hope no confusion results from this abuse
of language.
It is straightforward to verify that the statement “Az is club in ù1” is Π14(z)-in-
the-codes.
The statement “Az codes a bijection ð : ù1 → ã” (for ù1 ≤ ã < ù2) is Π14(z) as
well, and it means the following: Identify Az with a subset of ù1 × ù1. Similarly,
identify reals x with pairs of reals 〈x0, x1〉. Then Az codes ð as above iff (ù1, Az) is
well-ordered, which is the conjunction of the following clauses:

• ∀x ∀y ∀t
(

x, y, t code ordinals ∧ Âz〈x, y〉 ∧ Âz〈y, t〉 → Âz〈x, z〉
)

,

• ∀x
(

x codes an ordinal → ∃y
(

Âz〈x, y〉 ∨ Âz〈y, x〉
))

,

• ∀x ∀y
(

|x| = |y| → ¬Âz〈x, y〉
)

, and

• ∀x ∃n
(

¬Âz〈xn+1, xn〉
)

, where we identify reals with ù-sequences of reals in
some recursive way.

If this holds, the transitive collapse ð : ù1 → ã of (ù1, Az) is the claimed bijection,
we denote the ordinal ã by ãz and also refer to this Π14(z)-statement as “ã

z exists.”
Given z and y such that ãz and ãy exist, the statement ãz ≤ ãy is ∆15(z, y): We
can state it in a Σ15(z, y)-way since ã

z ≤ ãy iff there is an order preserving injection
ð : (ù1, Az)→ (ù1, Ay). We code ð : ù1 → ù1 by At , where

∀a ∀b ∀c ∀d
(

|a| = |b| ∧ |c| 6= |d | ∧ Ât〈a, c〉 → ¬Ât〈b, d 〉
)

∧ ∀a ∃b
(

Ât〈a, b〉
)

.

Given such map ð, it is order preserving as claimed iff

∀x ∀y ∀u ∀v
(

Ât〈x, u〉 ∧ Ât〈y, v〉 ∧ Âz〈x, y〉 → Ây〈u, v〉
)

.
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To claim that there is a t such that At is as above is Σ15(z, y). Similarly, ã
z ≤ ãy iff

every order preserving injection ð : (ù1, Ay) → (ù1, Az) is onto (which is to say, if
ãy ≤ ãz then ãy = ãz), and this gives a Π15(z, y)-formulation of the statement.
Let r and s code ordinals, say â and α, respectively, and let Az code a bijection
ð : ù1 → ãz . Then we can express that â = otð“α in a Σ14(r, s, z)-way: We must
express that there is an order preserving bijection between (ù, r) and

(

α,Az ∩

(α × α)
)

. For this, identify ù1 with ù × ù1, and R with ù × R. We can then
state that there is such a bijection by claiming that there is a real t such that the
conjunction of the following clauses holds:

• ∀n ∀x
(

Ât〈n, x〉 → x codes an ordinal∧|x| < α
)

,

• ∀n ∃x
(

Ât〈n, x〉
)

∧ ∀x
(

|x| < α → ∃n(Ât〈n, x〉)
)

,

• ∀n ∀m ∀x ∀y
[(

Ât〈n, x〉 ∧ Ât〈n, y〉 → |x| = |y|
)

∧
(

Ât〈n, x〉 ∧ Ât〈m, x〉 →

n = m
)

∧
(

|x| = |y| ∧ Ât〈n, x〉 → Ât〈n, y〉
)]

, and

• ∀n ∀m ∀x ∀y
[

Ât〈n, x〉 ∧ Ât〈m, y〉 →
(

r〈n,m〉 ↔ Âz〈x, y〉
)]

.

Recall now that (Sn : n < ù) is ∆13-in-the-codes. It follows that we can express
“t codes the ordinal ãx as witnessed by the club Aa” in a Π15(x, t, a)-way by saying
that

• At codes a bijection ð : ù1 → ã t ,
• Aa is club,
• Sx ∩ Aa = {α ∈ Aa : ot(ð“α) ∈ S0} (this is a Π14(x, a, t)-statement, see
below), and

• for all reals q and b such that Aq codes a bijection ð1 : ù1 → ãq and Ab is a
club and Sx ∩Ab = {α ∈ Ab : ot(ð1“α) ∈ S0}, it is then the case that ã

t ≤ ãq .

If this holds, then ãx = ã t . To see that

Sx ∩ Aa = {α ∈ Aa : ot(ð“α) ∈ S0}

is as claimed, notice that it can be expressed as follows: For all reals y, if Âa(y)
holds, then
[

Ŝx(y) ∧ ∀u
(

|u| = otð“|y| → Ŝ0(u)
)]

∨
[

¬Ŝx(y) ∧ ∀u
(

|u| = otð“|y| → ¬Ŝ0(u)
)]

,

where Ŝx =
⋃

{Ŝn+1 : n ∈ x} and we denote by Ŝn the set of codes for ordinals
in Sn .
We can thus define the well-ordering by saying that x < y iff x 6= y and there are
reals t, u, a, b such that ã t and ãu exist, ã t = ãx as witnessed by the club Aa , ãu = ãy
as witnessed by the club Ab , and ã

t ≤ ãu . This is a Σ16-statement about x and y,
and the proof is complete.

Remark 3.12. It is apparent from the proof that it suffices thatL[E ] has a cardinal
ë which is both Σ1-reflecting and 3-strong. Recall from [13, Definition 2.2] that a
cardinal κ is Σ1-reflecting iff κ is regular and for all a ∈ Hκ , all formulas ϕ(x) and
all î ≥ κ, if Hî |= ϕ(a) then there is ä < ë such that a ∈ Hä andHä |= ϕ(a).
In effect, the argument we have presented for SPFA(c) only requires ë to be
3-strong while the argument for BSPFA++ only requires that it be Σ1-reflecting.
Since ë is still a limit of measurable cardinals, øAC holds in L[E ]P. The definition
and complexity of the well-ordering, and both ∆

e

1
3(L ) and ∆

e

1
3(M ) require that Σ

1
3-

absoluteness holds between the final model L[E ]P and all the intermediate models
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L[E ]Pα , α < ë. To see that this is the case, notice that Σ13-absoluteness between
L[E ]Pα and anyL[E ]Pâ , α < â < ë, holds by Theorem 1.8 since all sets in L[E ]∩Vë
have sharps. The forcingP has the property that any real it adds is added by an initial
stage Pâ , and we may without loss of generality assume that â > α. Clearly, any
Σ13-statement in L[E ]

P (with parameters in L[E ]Pα ) is witnessed by one such real,
and Σ13-absoluteness between L[E ]

Pα and L[E ]Pâ guarantees that the Σ13-statement
holds in L[E ]Pα as well.

§4. A question. We do not know if something like the above can even produce
a Σ

e

1
5-well-ordering, but it seems difficult to be able to turn this definition into one

of complexity Σ
e

1
4 if, as in our case, the model is obtained by set forcing, given that

Σ13-absoluteness holds: It is conceivable that for (Sn : n < ù) as above and for some
real x, there is ã̂x < ãx such that for some stationary costationary set T ,

[Sx ∪ T ]NSù1 = bdbdã̂x ∈ ̇(S0)ceceRO(P (ù1)/NSù1 ).

If such is the case, it seems like the value of ãx can be lowered at least to ã̂x by
shooting a club that misses T while preserving the sets Sn. But Σ13-absoluteness
seems to prevent this from happening, if the well-ordering is Σ

e

1
4.

This does not mean that a Σ
e

1
4- or a Σ

e

1
5-well-ordering in the statement of Theo-

rem 1.6 is impossible, but if one of complexity Σ
e

1
4 can be produced perhaps class

forcing techniques are required, the problem becoming that of adding solutions to
a projective (Π13) predicate via projective (Π

1
3) singletons.

Question 4.1. Is the existence of Σ
e

1
4-well-orderings of R consistent with øAC +

SPFA(c)+BSPFA+++∆
e

1
3(L )+∆

e

1
3(M )? Does this depend onwhetherΣ

1
3-absoluteness

holds?
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