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a b s t r a c t

We compute an explicit upper bound for the regressive Ramsey
numbers by a combinatorial argument, the corresponding function
being of Ackermannian growth. For this, we look at the more
general problem of bounding g(n,m), the least l such that any
regressive function f : [m, l][2] → N admits a min-homogeneous
set of size n. An analysis of this function also leads to the
simplest known proof that the regressive Ramsey numbers have
a rate of growth at least Ackermannian. Together, these results
give a purely combinatorial proof that, for each m, g(·,m) has
a rate of growth precisely Ackermannian, considerably improve
the previously known bounds on the size of regressive Ramsey
numbers, and provide the right rate of growth of the levels of g .
For small numbers we also find bounds on their values under g
improving those provided by our general argument.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper, N = {0, 1, . . .}. For 1 ≤ n, k ≤ m, let m → (n)kreg be the following
assertion:

Whenever f : [1,m][k] → [0,m−k] is regressive, there isH ∈ [1,m][n]min-homogeneous for f .

Similarly, for X ⊆ N infinite, let X → (N)kreg mean that for every regressive f : X
[k]
→ N there is

H ⊆ X infinite and min-homogeneous for f . Here,

• X [k] is the collection of k-sized subsets of X .
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• f : X [k] → N is regressive iff f (s) < min(s) whenever s ∈ X [k] and min(s) > 0 (where min(s) is
the least element of s).
• For such an f , H ⊆ X is min-homogeneous for f iff 0 6∈ H and, whenever s, t ∈ H [k] and min(s) =
min(t), then f (s) = f (t).
• [n,m] = {n, n+ 1, . . . ,m}. Similarly for other interval notation.

The following is the main result of Kanamori–McAloon [5]:

Theorem 1.1. 1. For any k, n ∈ N, there is m such that m→ (n)kreg .
2. Item 1 is not a theorem of Peano Arithmetic PA.

In fact, in Kanamori–McAloon [5] a level-by-level correspondence is established between the
values of k and the amount of induction required to prove the existence of the function that to n
assigns the leastm as in Theorem 1.1.1; see Carlucci–Lee–Weiermann [2] for more on this.
In this paper, I only deal with k = 2 although, in Section 3, I present a short proof of Theorem 1.1.1.

In Section 4, I show that

g(n) = least l such that l→ (n)2reg
is provably total in PA. In fact, I provide an explicit (recursive) upper bound for g(n), thus showing by
purely elementary means that its rate of growth is at most Ackermannian.
To state the result, let g(n,m) be the least l such that for any regressive

f : [m, l][2] → [0, l− 2],

there is a min-homogeneous set for f of size n. (From now on, all mentions of g refer to this two-
variable function.) Clearly g(n,m) ≤ g(n,m+ 1), g(2,m) = m+ 1 and, by the pigeonhole principle,
g(3,m) = 2m+ 1.
Let G(n,m) be the least l such that for any regressive f : [m, l][2] → [0, l − 2], there is a min-

homogeneous set for f of size nwhose minimum element ism. It may not be immediate that G is well
defined, but this is addressed by Remark 3.3 and the proof of Theorem 4.1.
We have G(2,m) = g(2,m), G(3,m) = g(3,m), G(n + 1, 1) = g(n + 1, 1) = g(n, 2) and, in

general, g(n,m) ≤ G(n,m). Finally, set g0(n,m) = m and gk+1(n,m) = g(n, gk(n,m)). We then
have:

Theorem 1.2. 1. G(4,m) = 2m(m+ 2)− 1.
2. Let α−1 = 0 and, for 0 ≤ i < m, let di = g i(4,m+ 1) and

αi = (αi−1 +m+ 3+ i)(2di − 1).

Then g(5,m) ≤ (2m+ 1)+
∑m−1
i=0 αi.

3. For all n, there is a constant cn such that G(n,m) < An−1(cnm) for almost all m.

Here, An = A(n, ·) where A is Ackermann’s function, see Section 2. Theorem 1.2.2 is proven by
adapting the argument of Blanchard [1, Lemma 3.1] (that bounds g(5, 2)) to themore general problem
of bounding g(5,m). In Kojman–Shelah [7], explicit lower bounds for g are computed, showing that
g is at least of Ackermannian growth (our notion of ‘‘Ackermannian growth’’ is more restrictive than
that of Kojman–Shelah [7] or Kojman–Lee–Omri–Weiermann [6], and is discussed in Section 2). In
Section 5, I find lower bounds for G(n,m) and g(n,m) in terms of iterates of g(n−1, ·), and conclude:

Theorem 1.3. g(n,m) ≥ An−1(m− 1) for all n ≥ 2.

The proof of Theorem 1.3 is simpler and shorter than the proofs of lower bounds in Kojman–Shelah
[7] and Kojman et al. [6], and increases these bounds significantly. Thus the results of Sections 4
and 5 combine to give a very accessible and purely combinatorial proof of the result obtained in
Kanamori–McAloon [5] bymodel theoreticmethods, that g is not provably total in Primitive Recursive
Arithmetic PRA, but is ‘‘just shy’’ of it; in fact, the argument gives that, for eachm, the function g(·,m)
has an Ackermannian rate of growth. These results also establish the rate of growth of the function
g(n, ·) as being precisely that of the (n − 1)st level of the Ackermann hierarchy of fast growing
functions.
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In the literature, the values of g (more precisely, the values of g(·, 2)) are referred to as ‘‘regressive
Ramsey numbers.’’ In Section 6, I improve the upper bound for g(4,m) and show:

Theorem 1.4. g(4, 3) = 37.
I also improve the upper bound for g(4, 4) provided by the general argument of Section 6. The

figures so obtained improve the previously known bounds for small regressive Ramsey numbers
obtained in Blanchard [1] and Kojman et al. [6].
I occasionally abuse notation by writing f (t1, t2) for f (t)where t1 < t2 and t = {t1, t2}.

2. Preliminaries on Ackermannian functions

In this section I collect several standard results about Ackermannian growth; notice that the notion
I use is more restrictive than the version used in Kojman–Shelah [7] or Kojman et al. [6], where a
function is called Ackermannian simply if it eventually dominates each primitive recursive function.

Definition 2.1. Given functions g, h : N→ N, say that h eventually dominates g , in symbols g <∗ h, iff
g(m) < h(m) for all but finitely many values ofm.

Definition 2.2. Ackermann’s function A : N× N→ N is defined by double recursion as follows:
• A(0,m) = m+ 1.
• A(n, 0) = A(n− 1, 1) for n > 0.
• A(n,m) = A(n− 1, A(n,m− 1)) for n,m > 0.

Let Ack(n) = A(n, n) and An = A(n, ·). Sometimes, in the literature, it is Ack that is referred to as
Ackermann’s function. This is the standard example of a recursive but not primitive recursive function.
The version presented above is due to Rafael Robinson and Rózsa Péter, see Robinson [8]. Notice that
A1(m) = m+ 2, A2(m) = 2m+ 3, A3 has an exponential rate of growth and A4 grows like a tower of
exponentials.

Definition 2.3. Let f0(m) = m + 1 and fn+1(m) = f mn (m) where the superindex indicates that fn is
iteratedm times. Continue this hierarchy by letting fω(m) = fm(m) and fω+1(m) = f mω (m).

Notice that what in Kojman et al. [6] is called Ackermann’s function is themap A′(n,m) = fn−1(m).

Definition 2.4. A function f : N → N is (precisely) of Ackermannian growth if and only if there are
constants c, C > 0 such that for all but finitely manym, fω(cm) ≤ f (m) ≤ fω(Cm).
Similarly, say that a function’s rate of growth is like that of the nth level of the Ackermann hierarchy

if there are constants c, C > 0 such that for all but finitely manym, An(cm) ≤ f (m) ≤ An(Cm).

(Compare with Graham–Rothschild–Spencer [4, Section 2.7], where the relevant notion is called
Ackermannic.)
The following two lemmas are standard and collect together several folklore results; see for

example Graham–Rothschild–Spencer [4] and Cori–Lascar [3].

Lemma 2.5. 1. For all n, An < An+1 and fn<∗ fn+1. In fact, for any C > 0 and almost all m, An(Cm) <
An+1(m) for n > 0, and fn(Cm) < fn+1(m) for all n.

2. For all n > 0, An+1<∗ fn and fn(m) < An+1(cm) for some constant c = cn and all m.
3. fω and Ack are of Ackermannian growth. �

More precise quantitative versions of the above are possible, but Lemma 2.5 as stated suffices for
our purposes.

Lemma 2.6. 1. If f is of Ackermannian growth, it eventually dominates each primitive recursive function.
In particular, it eventually dominates each fn.

2. If f is of Ackermannian growth then it is eventually dominated by fω+1.
3. There is a function f that eventually dominates each fn and is eventually dominated by fω+1 but is not
of Ackermannian growth.

4. If g, h are strictly increasing primitive recursive functions and f is of Ackermannian growth, then so is
g ◦ f ◦ h. �
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3. Regressive functions

I start by proving the infinite version of Theorem 1.1.1. This is also done in Kanamori–McAloon
[5], but the argument to follow is easier (in Kanamori–McAloon [5] this is accomplished using the
Erdős–Rado canonization theorem). The proof of Theorem 1.2 in Section 4 was obtained by trying to
produce a finitary and effective version of this argument for k = 2.

Lemma 3.1. If X ⊆ N is infinite, then for any k, X → (N)kreg .

Proof. Let f : X [k] → N be regressive. Without loss, k > 1. Define a decreasing sequence of infinite
subsets of X , X \ {0} = H0 ⊃ H1 ⊃ H2 ⊃ · · · such that, letting mn = minHn, then (mn)n≥0 is strictly
increasing, as follows: Given Hn, let

ϕ : (Hn \ {mn})[k−1] → [0,mn − 1]

be the function ϕ(s) = f ({mn} ∪ s). By Ramsey’s theorem, there is Hn+1 infinite and homogeneous for
ϕ.
Then {mn : n ∈ N } is min-homogeneous for f . �

Theorem 1.1.1 follows now from a standard compactness argument:

Corollary 3.2. ∀n∀k ∃l (l→ (n)kreg).

Proof. Fix n and k counterexamples to the corollary. For each m ≥ n, k, it follows that there are
regressive functions f : [1,m][k] → [0,m− k]without min-homogeneous sets of size n. Consider the
collectionT of all these functions, ordered by extension: Given f1, f2 ∈ T , f1 : [1,m1][k] → [0,m1−k],
f2 : [1,m2][k] → [0,m2−k], set f1 < f2 iffm1 < m2, and f2 � [1,m1][k] = f1. Then (T , <) is an infinite
finitely branching tree so, by König’s lemma, it has an infinite branch. The functions along this branch
fit together into a regressive function f : N[k] → N which contradicts Lemma 3.1 since it does not
even admit min-homogeneous sets of size n. �

Remark 3.3. Notice that using this argument one can easily show that G(n,m) is well defined. Our
argument next section will also show this.

4. An Ackermannian upper bound for G

Here I prove Theorem 1.2.3; the argument resembles the ‘‘color focusing’’ technique from Ramsey
theory.

Theorem 4.1. For each fixed m, G(n,m) is bounded by a function of Ackermannian growth. In particular,
so is g(n, 2) ≤ G(n, 2).

Proof. I find an upper bound for the function G(n, ·) by induction on n. In order to do this, I introduce
numbers si = s(i, n,m) for all n ≥ 4,m ≥ 2, and 1 ≤ i ≤ m, and argue that G(n,m) ≤ s(m, n,m).
Fix n ≥ 4. The numbers si are computed in terms of the function G(n− 1, ·). Fixm, which we may

assume is at least 2.
Define s(1, n,m), . . . , s(m, n,m) and t0, t1, . . . , tm−1 recursively as follows.
• Let t0 = m+ 1.
• Let s1 = g(n− 1, t0) and, for 1 ≤ i < m, let si+1 = G(n− 1, ti).
• For 1 ≤ j ≤ m, let Bn,mj = Bj =

⋃j
i=1[ti−1, si], and denote by

∏
Bj the Cartesian product∏

i∈Bj
[0, i− 1].

• For 1 ≤ j < m, let tj = (j+ 1)× |
∏
Bj|.

We claim that G(n,m) ≤ s(m, n,m). To see this, suppose a regressive function f : [m, sm][2] →
[0, sm − 2] is given.
Fix j, 1 < j ≤ m. Suppose f (m, ·) � Bj takes at most j values. (This holds trivially for j = m.) We

claim that either there is amin-homogeneous set for f of size n contained in {m}∪Bj whoseminimum
element ism, or else f (m, ·) � Bj−1 takes at most j− 1 values.
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Consider the regressive function

ψ : [tj−1, sj][2] → [0, sj − 2]

given by

ψ(u) =
{
f (u) if u1 > tj−1,〈
f (l, u2) : l ∈ {m} ∪ Bj−1

〉
if u1 = tj−1,

where 〈· · ·〉 is a bijection from the Cartesian product Cj×
∏
Bj−1 onto [0, tj−1), where Cj ⊂ [0,m− 1]

has size j and contains the possible values that f (m, ·) � Bj can take.
Then (by definition of sj) there is a set {a1, . . . , an−2} ⊆ [tj−1+1, sj] that is min-homogeneous for f

and such that for all k ∈ {m}∪Bj−1, {k, a1, . . . , an−2} is alsomin-homogeneous for f . Let f (m, a1) = c .
If f (m, k) = c for any k ∈ Bj−1, then {m, k, a1, . . . , an−2} is the min-homogeneous set we are looking
for. Otherwise, f (m, ·) � Bj−1 takes at most j− 1 values, as claimed.
There is therefore no loss in assuming that f (m, ·) � B1 is constant. But then, by definition of

s1, there is {a1, . . . , an−1} ⊆ B1 min-homogeneous for f . Then {m} ∪ {a1, . . . , an−1} is also min-
homogeneous, and we are done.
Define a functionH(n,m) as follows:H(n, ·) = G(n, ·) for n ≤ 4 (see also Fact 5.3); in the argument

above, let s′i be the function resulting from replacing G(n − 1, ·) with H(n − 1, ·) in the definition of
si, and let H(n,m) = s′(m, n,m), so clearly G ≤ H . It is easy to see, using standard arguments (or
consider the proof of Theorem 1.2.3 below) that n 7→ H(n,m) (for any fixed m) is of Ackermannian
growth. This completes the proof. �

Remark 4.2. Since the argument above only requires f to be defined on

({m} ∪ Bn,mm )[2],

it follows (by ‘‘translation’’) that g(n,m) ≤ m+ |Bn,mm |.

That G(4,m) = 2m(m + 2) − 1 is shown in Fact 5.3, and the upper bound on g(5, ·) is shown in
Theorem 7.1. Using this (all I need is thatG(4,m) has an exponential rate of growth) and the argument
of Theorem 4.1, Theorem 1.2.3 follows easily:
Proof. Use the notation of the proof above, and argue by induction on n ≥ 5 since the result is clear
for n ≤ 4 from the explicit formulas for G(n, ·). Notice the easy estimate l! < 2l(l−1)/2 and the obvious
inequality s(i + 1, n,m) = si+1 ≤ G(n − 1, si!) for i < m. From this and Fact 5.3 we have that for
n = 5 there is a constant c5 such that si is bounded by a tower of two’s of length c5i applied atm,

si ≤ 22
. .
.
2m

.

In fact any c5 slightly larger than 3 suffices (with room to spare). This proves the result for n = 5; for
n > 5 use Lemma 2.5 and proceed by a straightforward induction to show that cn−1 = n− 1 suffices
(and therefore for eachm, g(·,m) has a rate of growth precisely Ackermannian). �

Question 4.3. Can the value of the constants cn be significantly improved? This seems to require a more
careful analysis than the one above, perhaps combined with fine detail considerations, as in the proof of
Theorem 7.1.

5. Lower bounds for g and G

Here I prove Theorem 1.3.

Theorem 5.1. 1. G(n+ 1,m) ≥ gm(n,m+ 1).
2. g(n+1,m+1) ≥ g(n, g(n+1,m)+1). In particular, for n ≥ 2 andm ≥ 1, g(n,m) ≥ An−1(m−1),
the inequality being strict for n > 2 and, for example, g(4,m) > 2m+2 for m > 1.

Proof. I exhibit a regressive function f : [m, gm(n,m + 1) − 1][2] → N without min-homogeneous
sets of size n+ 1 whose minimum element ism. Start by choosing regressive functions
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Fk : [gk(n,m+ 1), gk+1(n,m+ 1)− 1][2] → N

without min-homogeneous sets of size n, for k < m; this is possible by definition of g(n, ·). Now set,
form < a ≤ gm(n,m+ 1)− 1,

f (m, a) = k⇐⇒ gk(n,m+ 1) ≤ a < gk+1(n,m+ 1),

and, for such a, and b ∈ (a, gk+1(n,m+ 1)− 1],

f (a, b) = Fk(a, b).

Define f (a, b) for other values of a and b arbitrarily (below a). This function works, for if min(H) > m
and {m} ∪ H is min-homogeneous for f , then H is completely contained in some interval

[gk(n,m+ 1), gk+1(n,m+ 1))

for some k < m, but then H is min-homogeneous for Fk, so |H| < n.
I now prove item 2. Let Fm : [m, g(n + 1,m)][2] → N be a regressive function without min-

homogeneous sets of size n+ 1, and let

hm : [g(n+ 1,m)+ 1, g(n, g(n+ 1,m)+ 1)][2] → N

be a regressive function without min-homogeneous sets of size n. Define

Fm+1 : [m+ 1, g(n, g(n+ 1,m)+ 1)][2] → N

by

Fm+1(a, b) =

{Fm(a− 1, b− 1) if b ≤ g(n+ 1,m),
a− 1 if a ≤ g(n+ 1,m) < b,
hm(a, b) if g(n+ 1,m) < a.

Then Fm+1 is regressive. If H is min-homogeneous for Fm+1 and |H| ≥ 2, let a = min(H) and b =
min(H\{a}). If b ≤ g(n+1,m) then Fm+1(a, b) = Fm(a−1, b−1) < a−1 soH ⊆ [m+1, g(n+1,m)]
and {h− 1 : h ∈ H} is min-homogeneous for Fm, so |H| ≤ n.
If g(n + 1,m) < b then H \ {a} is min-homogeneous for hm, so |H \ {a}| < n and |H| < n + 1 in

this case as well. �

Remark 5.2. Notice that for n = 3, the argument of Theorem 5.1.1 describes (up to trivial renamings)
all the examples of regressive functions f : [m, gm(3,m + 1) − 1][2] → N not admitting min-
homogeneous sets of size 4withminimumelementm. It is easy now to give an example of a regressive
f : [2, 14][2] → Nwitnessing 14 6→ (5)2reg :

f (i, j) =



j− i− 1(mod i) if i ≥ 6,

0 if i = 2 and j ≤ 6,i ∈ [3, 5] and j = i+ 1,

1 if
i = 2 and 7 ≤ j,
i = 3 and j ∈ {5, 7, 8},
i ∈ {4, 5} and j = i+ 1,

2 if
i = 3 and j ∈ {6} ∪ [9, 14],
i = 4 and j = 7,
i = 5 and 8 ≤ j,

3 if i = 4 and 8 ≤ j.

I leave to the reader the easy verification that this example works; in Theorem 6.1.2, I analyze a more
difficult examplewitnessing g(4, 3) ≥ 37. See Blanchard [1] for an analysis of a different example also
witnessing g(4, 2) ≥ 15; the function I have presented is closer in spirit to the other constructions in
this paper.

Now I prove Theorem 1.2.1:
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Fact 5.3. G(4,m) = 2m(m+ 2)− 1.
Proof. Notice that 2m(m + 2) − 1 = gm(3,m + 1) ≤ G(4,m) by Theorem 5.1.1. Suppose f :
[m, 2m(m + 2) − 1][2] → N is regressive. A straightforward induction on k ≤ m shows that either
f (m, ·) � [m+ 1, 2k(m+ 1)+ 2k− 1] takes at least k+ 1 values, or else f admits a min-homogeneous
set A ∈ [m, 2k(m+1)+2k− 1][4] withm ∈ A (see also the proof of Theorem 6.1.1 for a more detailed
presentation of a similar approach). When k = m, this shows that G(4,m) ≤ 2m(m+ 2)− 1. �

Remark 5.4. Thus, g(4, 2) = G(4, 2) = 15. In the next section, I improve the upper bound for g(4,m),
m > 2.

Corollary 5.5. g(5, 2) > 218.
This significantly improves the bound g(5, 2) ≥ 195 claimed in Blanchard [1].

Proof. g(5, 2) ≥ g(4, g(5, 1)+ 1) = g(4, 16) > 218. �

Remark 5.6. In fact, by Theorem 6.1.2, g(4, 3) = 37, so g(4,m) ≥ 5 × 2m − 3 for m ≥ 3, and
g(5, 2) ≥ 5× 216 − 3.

Theorem 5.1.2 also improves significantly the bound g(81, 2) > f51(22
274
) obtained in Kojman

et al. [6, Claim 2.32] (here, f51 is as in Section 2; to see that the new bound is an improvement, a
slightly more precise version of Lemma 2.5 is necessary).

6. Bounds for g(4, ·)

From Section 5 it follows that g(4,m) ≤ 2m(m + 2) − 1. Here I improve this bound and prove
Theorem 1.4.

Theorem 6.1. 1. For m ≥ 2, g(4,m) ≤ 2m(m+ 2)− 2m−1 + 1.
2. g(4, 3) = 37.
3. g(4, 4) ≤ 85.
Proof. I have already shown that g(4, 2) = 15. Assumem ≥ 3, let

n = 2m(m+ 2)− 2m−1 + 1,

and suppose a regressive f : [m, n][2] → N is given. I need to argue that there is H ∈ [m, n][4] min-
homogeneous for f . For i < m, let ai = min{j : f (m, j) = i} and Ci = {j > ai : f (m, j) = i}. One may
assume that, as long as the ai are defined, they occur in order, som+ 1 = a0 < a1 < · · ·
If f (m+ 1, a) = f (m+ 1, b) for a 6= b in C0, then H = {m,m+ 1, a, b} is as required. Assume now

that f (m+ 1, ·) � C0 is injective and, in particular, |C0| ≤ m+ 1.
For i ∈ C0 let Bi = {j > i : f (m + 1, j) = f (m + 1, i)}. I claim that for all k ∈ [1,m − 2], either

ak ≤ 2k(m + 2) − 2k−1 − 1, or else there is an H as required and either of the form {m, ai, a, b} for
some i < k and some a, b ∈ Ci, or of the form {m+ 1, i, a, b} for some i ∈ C0 and some a, b ∈ Bi.
The proof is by induction on k. Fix a least counterexample. Then

at ≤ 2t(m+ 2)− 2t−1 − 1

for all t ∈ [1, k) and 1 ≤ k < m−1. Then ak ≤ 2k(m+2)−2k−1. Otherwise, for some i < k, |Ci| > ai.
If ak = 2k(m + 2) − 2k−1, then at = 2t(m + 2) − 2t−1 − 1 for all t ∈ [1, k) (or else, again, some Ci
for i < k has size larger than ai). Also, there is some j ∈ (2m+ 1, ak) in C0. But then |Bi| > i for some
i ∈ C0, and the claim follows: Otherwise,∑

i∈C0

|Bi| ≤
∑

i∈[m+2,2m+1]∪{j}

i ≤
2m+1∑
i=m+2

i + 2k(m+ 2)− 2k−1 − 1

=
3
2
m(m+ 1)+ 2k(m+ 2)− 2k−1 − 1

< n− 2(m+ 1) = |[2m+ 2, n] \ {j}|

because (3+ 2m)(2m − 2k) ≥ 3(3+ 2m)2m−2 > 3m2 + 7m form ≥ 3.



Author's personal copy

810 A.E. Caicedo / European Journal of Combinatorics 31 (2010) 803–812

It follows that one may assume am−1 ≤ 2m−1(m+ 2)− 2m−2, but then, since n ≥ 2am−1+ 1, some
Ci must have size larger than ai, and the proof is complete.
Now I show that g(4, 3) = 37. The upper bound follows from the argument above. To see that

g(4, 3) ≥ 37, I exhibit a regressive f : [3, 36][2] → N without min-homogeneous sets of size 4.
Consider the function f shown below: For 3 ≤ i < j ≤ 36, set

f (i, j) =



j− i− 1(mod i) if

i ≥ 16,
8 ≤ i ≤ 15 and j ≤ 16,
12 ≤ i ≤ 15 and j ≤ 19,
4 ≤ i ≤ 6 and j ≤ 7,
i = 6 and j ≤ 11,

0 if

i = 3 and (j ≤ 7 or j = 17),
i = 5 and 8 ≤ j ≤ 11,
i = 6 and 12 ≤ j ≤ 16,
i = 7 and j ≤ 12,

1 if

i = 3 and 8 ≤ j ≤ 16,
i = 4 and 8 ≤ j ≤ 11,
i = 5 and 12 ≤ j ≤ 16,
i = 6 and j = 18,
i = 7 and j = 13,

2 if

i = 3 and 18 ≤ j,
i = 4 and j ∈ [12, 19] \ {17},
i = 5 and j = 17,
i = 6 and j = 19,
i = 7 and j = 14,
i = 15 and 21 ≤ j,

3 if

i = 4 and (j = 17 or 20 ≤ j),
i = 5 and 18 ≤ j,
i = 7 and j = 15,
i = 11 and 17 ≤ j ≤ 20,
i = 14 and 20 ≤ j,

4 if

i = 7 and j = 16,
i = 10 and 17 ≤ j ≤ 20,
i = 11 and 21 ≤ j,
i = 13 and 20 ≤ j,
i = 15 and j = 20,

5 if

i = 6 and (j = 17 or 20 ≤ j),
i = 7 and (j = 17 or j = 19),
i = 9 and 17 ≤ j ≤ 20,
i = 10 and 21 ≤ j,
i = 12 and 20 ≤ j,

6 if
i = 7 and (j = 18 or 20 ≤ j),
i = 8 and 17 ≤ j ≤ 20,
i = 9 and 21 ≤ j,

7 if i = 8 and 21 ≤ j.

To help understand the example somewhat, notice that the argument above shows that one must
have a1 = 8 and a2 = 18, f (i, ·) must be injective for i ≥ 18 and similarly f (i, ·) � Ci must be
injective for i ∈ [4, 7] and Ci = {j > i : f (3, j) = f (3, 4)}, or i ∈ [8, 16] ∩ {j : f (3, j) = f (3, 8)} and
Ci = [i+1, 17]∩{j : f (3, j) = f (3, 8)}. If f is any function satisfying these conditions, a < b < c < d,
and A = {a, b, c, d} is min-homogeneous for f , then a > 3 and b < 18.
The function f displayed above satisfies the conditions just described. Let A as above be a putative

min-homogeneous set. Then a < 16 since otherwise f (a, ·) does not take any value more than twice.
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In fact, a < 12, since 12 ≤ a ≤ 15 would imply (for the same reason) that b ≥ 18. If 8 ≤ a ≤ 11,
then b ≥ 15. Since f (i, ·) � Di is injective for i ∈ {15} ∪ [17, 20] and Di = (i, 20], or i = 16 and
Di = [21, 36], this is not possible.
If a = 7 then b 6∈ [8, 12] as f (i, ·) � (i, 12] is injective for i ∈ [8, 12]. This forces b ≥ 18.
If a = 6 then b 6∈ {7}∪[12, 16] as f (b, ·) � [max(b+1, 12), 16] is then injective. This forces b = 17

but f (17, ·) � [20, 36] is injective, so this cannot be the case.
The analysis above already rules out a = 5 since f (6, ·) � [8, 11] is injective. Since f (7, ·) �

[12, 16] ∪ {18, 19} is also injective, it also rules out a = 4, completing the argument.
Finally, I argue that g(4, 4) ≤ 85. Let a regressive f : [4, 85][2] → N be given. Use notation

as before. Then one can assume (from the argument for item 1) that a1 ≤ 10. If a1 = 10, since
6+ 7+ 8+ 9 = 30, one can assume that there is b ≤ 40 such that f (5, b) = 4 (while f (5, j) = j− 6
for j ∈ [6, 9]). But then there is a min-homogeneous set for f of size 4 with minimum element 5 and
maximum at most 81.
If a1 ≤ 9 then a2 ≤ 21. If a2 = 21 then one can assume f (5, j) = j− 6 for j ∈ [6, 8] and there are

b1, b2 with f (5, b1) = 3, f (5, b2) = 4, b1 ≤ 19 and b2 ≤ 20. Since 6 + 7 + 8 + 19 + 20 = 60, there
is again a min-homogeneous set of size 4 in this case. If a2 ≤ 20, then a3 ≤ 42 and |Ci| > ai for some
i < 4. This shows g(4, 4) ≤ 85. �

7. Bounds for g(5, ·)

In this section I briefly sketch how to adapt the proof of Blanchard [1, Lemma 3.1] to prove themore
general statement below, which concludes the proof of Theorem 1.2. The bound for g(5, 2) is smaller
than the one in Blanchard [1] because I take advantage of the fact that g(4, 3) = 37, as established in
Theorem 6.1.2.

Theorem 7.1. Let m be given. For i < m, set di = g i(4,m+ 1). Let α−1 = 0 and αi = (αi−1+m+ 3+
i)(2di − 1) for 0 ≤ i < m. Then

g(5,m) ≤ (2m+ 1)+
m−1∑
i=0

αi.

In particular, g(5, 2) ≤ 41× 237 − 1.

Proof. Let n be the purported upper bound displayed above and consider a regressive function
f : [m, n][2] → N. For i < m, let

Bi = {x ∈ [m+ 1, n] : f (m, x) = i}

and, if Bi 6= ∅, set ai = min(Bi). Without loss, a0 = m + 1 < a1 < · · · . Clearly, we may assume that
ai ≤ g i(4,m + 1) = di for all those i < m for which ai is defined. In particular, since n is sufficiently
large, we may assume that the ai are defined for all i < m.
Consider Bij = {x ∈ [ai + 1, n] : f (m, x) = i, f (ai, x) = j} for i < m and j < ai and, if Bij 6= ∅,

set aij = min(Bij). Let D = {Bij : Bij 6= ∅} and q = |D|, so q ≤
∑m−1
i=0 di. Let {Cs : s < q} be the

enumeration of D such that, setting cs = min(Cs), then the sequence (cs : s < q) is strictly increasing.
Notice that ai 6∈ Cl for any i, l, and ai < aij for all i, j such that aij is defined. For i < m, define ki as

the least k < q such that ai < ck. Then

ki ≤
i−1∑
j=0

ai ≤
i−1∑
j=0

di.

I now proceed to find an upper bound ls on the size of Cs beyond which one is guaranteed to find a
min-homogeneous set of size 5. The value of n displayed above is obtained by first observing that

[m, n] = {m} ∪ {ai : i < m} ∪
q−1⋃
s=0

Cs,

so n−m+ 1 = m+ 1+
∑q−1
s=0 |Cs|, and then setting n ≥ 2m+

∑
s ls + 1.
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To find ls, notice that

[m, cs] ⊆ {m} ∪ {ai : ai < cs} ∪
s−1⋃
0

Cj ∪ {cs},

so cs −m+ 1 ≤ 2+ (i+ 1)+
∑s−1
0 |Cj|, where s ∈ [ki−1, ki), or

cs ≤ m+ 1+ (i+ 1)+
s−1∑
0

|Cj|.

Let C ′s = Cs \ {cs}. If

|C ′s| ≥ (m+ 2)+ (i+ 1)+
s−1∑
0

|Cj|,

then f (cs, ·) � C ′s is not injective; so there are d < e in C
′
s such that f (cs, d) = f (cs, e) and {m, aj, cs, d, e}

is min-homogeneous, where j ≤ i is chosen so that Cs = Bjk for some k.
This gives the upper bound ls ≤ (m+ i+ 3)+

∑s−1
0 lj; so, by a straightforward induction,

• ls ≤ 2s(m+ 3) for s < d0,
• ls ≤ 2s−d0((m+ 3)(2d0 − 1)+ (m+ 4)) for d0 ≤ s < d0 + d1,
• and, in general, for i < m, and

∑i−1
j=0 dj ≤ s <

∑i
j=0 dj, we have

ls ≤ 2s−di−1((· · · ((m+ 3)(2d0 − 1)+ (m+ 4))(2d1 − 1)+ · · ·)(2di−1 − 1)+ (m+ 3+ i)).

These upper bounds give the value of n that I started with, and the claimed inequality g(5,m) ≤ n
follows. In the casem = 2, it implies

g(5, 2) ≤ (2× 2+ 1)+ (2+ 3)(22+1 − 1)+ (5(23 − 1)+ 6)(2g(4,3) − 1)
= 40+ 41(237 − 1) = 41× 237 − 1.

This completes the proof. �

I conclude with some questions:

Question 7.2. Is G(n+ 1,m) > gm(n,m+ 1) for n > 4?

Question 7.3. Is 2m(m+ 1) ≤ g(4,m) for all m?
The proofs of Theorems 6.1 and 7.1 suggest that to fully understand g requires solving the following

question:
For any n,m and regressive f : [m, g(n,m)][2] → N, set
kf = min{min(H) :H ∈ [m, g(n,m)][n] is min-homogeneous for f },

and let
k(n,m) = max{kf : f : [m, g(n,m)][2] → N is regressive}.

Question 7.4. What is the rate of growth of the function k(n,m)?
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