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As part of the University of Florida Special Year in Logic, I attended a conference at
Gainesville on March 5-9, 2007, on Singular Cardinal Combinatorics and Inner Model The-
ory. Over lunch, Hugh Woodin mentioned a nice argument that quickly gives a proof of the
second incompleteness theorem for set theory, and somewhat more. I present this argument
here.

The proof is similar to that in Thomas Jech, On Gddel’s second incompleteness theorem,
Proceedings of the American Mathematical Society 121 (1) (1994), 311-313. However, it
is semantic in nature: Consistency is expressed in terms of the existence of models. In
particular, we do not need to present a proof system to make sense of the result. Of course,
thanks to the completeness theorem, if consistency is first introduced syntactically, we can
still make use of the semantic approach.

Woodin’s proof follows.

Argue within ZFC.

It is fairly easy to formalize first order languages in set theory so that for each formula
¢ we have a formal counterpart (a code) "¢, the map ¢ — "¢ is recursive, so that the
usual syntactic operations with formulas can be carried out on their formalizations, and
satisfaction (for set-sized models) is defined.

The key technical tool we require is the fixed-point lemma:

Lemma 1 For any formula ¢¥(x) in one free variable, there is a sentence ¢ such that
¢ = P("o7).

PRrOOF: This is well known. Let 7(x) assert that x is the code of a formula u(y) and that
P("p("p)7) holds.
Let a be the code for 7(x). Then 7(a) iff ¥("7(a)™), so we can take ¢ to be 7(a). O
From now on, I will abuse language and simply write ¢ for both a formula and its code.
Let (M, €) = ZFC. For m, E € M, write

(m,E)*=({be M |MEbeEm},{(a,b) € M x M | M | “a,bém & (m, E) = aEb’}).


http://www.math.ufl.edu/~jal/logicyear/scim/abs.html
http://www.math.ufl.edu/~jal/logicyear/scim/abs.html
http://www.jstor.org.libproxy.boisestate.edu/stable/2160398?origin=crossref&

Then (m, E)* is the actual model that m, F' code within (M, €).

The following is shown by a straightforward induction on formulas:
Lemma 2 Suppose (M, €) = ZFC. If (M,€) &= “m, E) = ¢”, then (m, E)* = ¢.

(Of course, by considering =, it follows immediately that the converse also holds.)

We say that P(x) is a property of models of set theory iff P(M) implies M = ZFC.

Say that P is hereditary iff it is a property of models of set theory and, whenever
P(M)& M = P(N),

then P(N*).

Theorem 3 Suppose that P is hereditary. Then, either P(N) fails for all N, or else there
is an N such that P(N)& N =VM -P(M).

PrOOF: Let Thp = {¢ | VN (P(N) — N = ¢)}. Using the fixed-point lemma, let ¢ be
such that (ZFC proves that) ¢ < (=¢ € Thp).

Suppose P(N)& N = —¢. Then N = ¢ ¢ Th,, so N = “P(M)&M = ¢” for some
M € N. But then P(M*) & M* = ¢.

We have shown that IN P(N) implies 3N (P(N)& N = ¢). Fix such N, and note that
N EVYM (P(M) — M = —9).

Suppose N = 3IM P(M). Then N |=3M (P(M)& M = ¢), contradiction. Hence
N | VM -P(M),
as needed. UJ

Let “ZFC is consistent” be the assertion that there is a model of ZFC. The second incom-
pleteness theorem follows at once:

Corollary 4 Either ZFC is inconsistent, or else IM = ZFC + “ZFC is inconsistent.”

PrOOF: Let P(N) = N | ZFC. We claim that P is hereditary. This amounts to showing
that M = P(N) implies P(N*).

This is because for each true axiom ¢ of ZFC, M = “N |= ¢” implies N* | ¢, and
ME “P(N)— N E ¢ O

Corollary 5 Fither there are no w-models of ZFC or else there is an w-model of ZFC
without w-models of ZFC.

PROOF: Let P(N) = N is an w-model of ZFC. Suppose that P(M)& M = P(N). Then
N* = ZFC and M = wV 2w so w™N" = wM =y, and P(N*) follows. O



Corollary 6 Fither there are no transitive models of ZFC or else there is a transitive model
without transitive models.

PROOF: Let P(N) = N is a transitive model of ZFC. Let M = P(N), M transitive. Then
N C M, so N is really transitive. [

Remark 7 If M is an w-model of ZFC, then
M = ‘9N E ZFC”.

This is because ZFC proves the completeness theorem, and therefore “ZFC is consistent” is
(equivalent to) the arithmetic statement “There is no proof from ZFC of 0 = 1”. But the
existence of M implies that this statement is true. Now note that, since M is an w-model,
it 1is correct for arithmetic statements.

Remark 8 Similarly, if M is a transitive model of ZFC, then
M = “There is an w-model of ZFC”.

This is because of Mostowski’s absoluteness theorem: Any transitive model of set theory
is correct about Y1 statements. See, for evample, section 13 of Akihiro Kanamori, The
higher infinite: Large cardinals in set theory from their beginnings, Springer,
second edition (2008).

Note that the statement “There is an w-model of ZFC” is X1, as it can be expressed by
saying that there is a real x coding a model of ZFC, and there is a real y coding an order
isomorphism of w onto the natural numbers of the model coded by x.

Since any transitive model is an w-model, the existence of M implies that the ¥} statement
that there is an w-model is true. But then it holds in M.

The following is a version for w-models of ZFC of a result of Steel on w-models of second
order arithmetic, see John Steel, Descending Sequences of Degrees, The Journal of Symbolic
Logic, 40 (1), (Mar., 1975), 59-61.

If M is a model of set theory, and M |= “N is a model of T” for some theory 7', we can think
of N as a code for N*. We use “code” in a slightly more general fashion in the statement
below:

Corollary 9 There is no sequence (M, | n < w) of w-models of ZFC such that for all n,
there is a code for (My, | m > n) in M,.

PRrROOF: Let P(N) = “N is an w-model of ZFC and there is a sequence (M,, | n € w) of
w-models of ZFC such that N = M, and, for all n, there is a code for (M,, | m > n) in
M,”.

Obviously, P is hereditary, since being an w-model is. It follows that either the corollary
holds, or else there is an N such that P(N) but N = VM —~P(M).


http://www.amazon.com/Higher-Infinite-Beginnings-Monographs-Mathematics/dp/3540003843
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However, the second possibility is impossible, since if (M, | n € w) is a sequence witnessing
P(N), then (M1 | n € w) is a sequence witnessing P(M;). But the code M* for this
sequence is in N = My and so, in N, P holds of the code for Mj, as witnessed by M*.
Contradiction. [

Finally, I sketch how to recover the full version of the second incompleteness theorem from
Woodin’s proof.

Theorem 10 IfT is a consistent recursively enumerable theory that interprets PA, then T
cannot prove its own consistency.

PROOF: There are a few additional wrinkles, since we only assume that the theory under
consideration interprets PA:

1. It is not clear how to even state the completeness theorem within PA. However,
completeness is provable within the system ACA( of second order arithmetic (this is
shown in Stephen Simpson, Subsystems of second order arithmetic, Cambridge
University Press, second edition (2010), see for example Theorem 1V.3.3). Moreover,
for arithmetic statements, ACAq is conservative over PA.

2. Although it is fairly straightforward that ACAg is conservative over PA for first order
statements, we need that this is provable within PA. This can be done in a few ways.
See, for example, Joseph Shoenfield, Mathematical Logic, A K Peters (2001).

From the above, it follows that arguing within 7', we can implement Woodin’s proof. [
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