Sy Friedman and I recently submitted the paper and projective well-orderings of the reals to The Journal of Symbolic Logic. The preprint is available at my papers page.

In a previous paper, Boban Velickovic and I showed that if the bounded version of the proper forcing axiom, holds, then one can define a well-ordering of the reals using what is in essence a subset of as a parameter. The argument uses Justin Moore‘s technique of the Mapping Reflection Principle, and provides us with a well-ordering. In this sense, the result is best possible.

In earlier work, I had shown that is consistent with a projective well-ordering of the reals. The result with Velickovic dramatically improves this; for example, if and holds, then there is a projective well-ordering of Note that this is an implication rather than just a consistency result, and does not require that the universe is a forcing extension of The point here is that the parameter can be chosen in so that it is “projective in the codes,” and then provides us with enough coding machinery to transform the definition of the well-ordering into a projective one.

In the new paper, Friedman and I show that in fact under the projective definition is best possible, For this we need to combine the coding technique giving the well-ordering with a powerful coding device in the absence of sharps, what Friedman calls David’s trick. The point now is that the forcing required to add the witnesses that make the coding work is proper, and suffices to grant in the universe the existence of these objects.

As a technical problem, it would be interesting to see whether the appeal to the mapping reflection principle can be eliminated here. We only obtain a well-ordering in that case. Also, since turns out, perhaps unexpectedly, to provides us with definable well-orderings, it would be interesting to see that does not suffice for this.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, December 17th, 2009 at 2:15 pm and is filed under Papers. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I learned of this problem through Su Gao, who heard of it years ago while a post-doc at Caltech. David Gale introduced this game in the 70s, I believe. I am only aware of two references in print: Richard K. Guy. Unsolved problems in combinatorial games. In Games of No Chance, (R. J. Nowakowski ed.) MSRI Publications 29, Cambridge University Press, 1996, pp. […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

Yes. This is obvious if there are no such cardinals. (I assume that the natural numbers of the universe of sets are the true natural numbers. Otherwise, the answer is no, and there is not much else to do.) Assume now that there are such cardinals, and that "large cardinal axiom" is something reasonable (so, provably in $\mathsf{ZFC}$, the relevant […]

Please send an email to mathrev@ams.org, explaining the issue. (This is our all-purpose email address; any mistakes you discover, not just regarding references, you can let us know there.) Give us some time, I promise we'll get to it. However, if it seems as if the request somehow fell through the cracks, you can always contact one of your friendly edit […]

The problem is in the quantifiers that are implicit in the statement you are making. What you have is that for all $\epsilon>0$ and all integers $k,m$ with $k>m>0$, there is an $N$ such that if $n>N$, then $|a_n|

The relevant search term is ethnomathematics. There are several journals devoted to this topic (for instance, Revista latinoamericana de etnomatemática). Browsing them (if you have access to MathSciNet, the relevant MSC class is 01A70) and looking at their references should help you get started. Another place to look for this is in journals of history of mat […]

Some of the comments in the previous answers make a subtle mistake, and I think it may be worth clarifying some issues. I am assuming the standard sort of set theory in what follows. Cantor's diagonal theorem (mentioned in some of the answers) gives us that for any set $X$, $|X|

For $\lambda$ a scalar, let $[\lambda]$ denote the $1\times 1$ matrix whose sole entry is $\lambda$. Note that for any column vectors $a,b$, we have that $a^\top b=[a\cdot b]$ and $a[\lambda]=\lambda a$. The matrix at hand has the form $A=vw^\top$. For any $u$, we have that $$Au=(vw^\top)u=v(w^\top u)=v[w\cdot u]=(w\cdot u)v.\tag1$$ This means that there are […]

That you can list $K $ does not mean you can list its complement. Perhaps the thing to note to build your intuition is that the program is not listing the elements of $K $ in increasing order. Indeed, maybe program 20 halts on input 20 but only does it after several million steps, while program 19 doesn't halt on input 19 and program 21 halts on input 2 […]