Sy Friedman and I recently submitted the paper and projective well-orderings of the reals to The Journal of Symbolic Logic. The preprint is available at my papers page.

In a previous paper, Boban Velickovic and I showed that if the bounded version of the proper forcing axiom, holds, then one can define a well-ordering of the reals using what is in essence a subset of as a parameter. The argument uses Justin Moore‘s technique of the Mapping Reflection Principle, and provides us with a well-ordering. In this sense, the result is best possible.

In earlier work, I had shown that is consistent with a projective well-ordering of the reals. The result with Velickovic dramatically improves this; for example, if and holds, then there is a projective well-ordering of Note that this is an implication rather than just a consistency result, and does not require that the universe is a forcing extension of The point here is that the parameter can be chosen in so that it is “projective in the codes,” and then provides us with enough coding machinery to transform the definition of the well-ordering into a projective one.

In the new paper, Friedman and I show that in fact under the projective definition is best possible, For this we need to combine the coding technique giving the well-ordering with a powerful coding device in the absence of sharps, what Friedman calls David’s trick. The point now is that the forcing required to add the witnesses that make the coding work is proper, and suffices to grant in the universe the existence of these objects.

As a technical problem, it would be interesting to see whether the appeal to the mapping reflection principle can be eliminated here. We only obtain a well-ordering in that case. Also, since turns out, perhaps unexpectedly, to provides us with definable well-orderings, it would be interesting to see that does not suffice for this.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, December 17th, 2009 at 2:15 pm and is filed under Papers. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I thought about this question a while ago, while teaching a topics course. Since one can easily check that $${}|{\mathbb R}|=|{\mathcal P}({\mathbb N})|$$ by a direct construction that does not involve diagonalization, the question can be restated as: Is there a proof of Cantor's theorem that ${}|X|

First of all, note (as Monroe does in his question) that if $\mathbb P,\mathbb Q$ are ccc, then $\mathbb P\times\mathbb Q$ is $\mathfrak c^+$-cc, as an immediate consequence of the Erdős-Rado theorem $(2^{\aleph_0})^+\to(\aleph_1)^2_2$. (This is to say, if $\mathbb P$ and $\mathbb Q$ do not admit uncountable antichains, then any antichain in their product ha […]

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

A notion now considered standard of primitive recursive set function is introduced in MR0281602 (43 #7317). Jensen, Ronald B.; Karp, Carol. Primitive recursive set functions. In 1971 Axiomatic Set Thoory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) pp. 143–176 Amer. Math. Soc., Providence, R.I. The concept is use […]

The power of a set is its cardinality. (As opposed to its power set, which is something else.) As you noticed in the comments, Kurepa trees are supposed to have countable levels, although just saying that a tree has size and height $\omega_1$ is not enough to conclude this, so the definition you quoted is incomplete as stated. Usually the convention is that […]

The key problem in the absence of the axiom of replacement is that there may be well-ordered sets $S$ that are too large in the sense that they are longer than any ordinal. In that case, the collection of ordinals isomorphic to an initial segment of $S$ would be the class of all ordinals, which is not a set. For example, with $\omega$ denoting as usual the f […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\}$, and $\mathsf{ZFC}$ proves that $\phi$ and $\psi$ […]