From Georg Kreisel‘s review of The decision problem for exponential diophantine equations, by Martin Davis, Hilary Putnam, and Julia Robinson, Ann. of Math. (2), 74 (3), (1961), 425–436. MR0133227 (24 #A3061).

This paper establishes that every recursively enumerable (r.e.) set can be existentially defined in terms of exponentiation. […] These results are superficially related to Hilbert’s tenth problem on (ordinary, i.e., non-exponential) Diophantine equations. The proof of the authors’ results, though very elegant, does not use recondite facts in the theory of numbers nor in the theory of r.e. sets, and so it is likely that the present result is not closely connected with Hilbert’s tenth problem. Also it is not altogether plausible that all (ordinary) Diophantine problems are uniformly reducible to those in a fixed number of variables of fixed degree, which would be the case if all r.e. sets were Diophantine.

Of course, my favorite quote in relation to the tenth problem is from the Foreword by Martin Davis to Yuri Matiyasevich’s Hilbert’s tenth problem.

During the 1960s I often had occasion to lecture on Hilbert’s Tenth Problem. At that time it was known that the unsolvability would follow from the existence of a single Diophantine equation that satisfied a condition that had been formulated by Julia Robinson. However, it seemed extraordinarily difficult to produce such an equation, and indeed, the prevailing opinion was that one was unlikely to exist. In my lectures, I would emphasize the important consequences that would follow from either a proof or a disproof of the existence of such an equation. Inevitably during the question period I would be asked for my own opinion as to how matters would turn out, and I had my reply ready: “I think that Julia Robinson’s hypothesis is true, and it will be proved by a clever young Russian.”

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Sunday, August 11th, 2013 at 6:06 pm and is filed under Computability theory. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

The description below comes from József Beck. Combinatorial games. Tic-tac-toe theory, Encyclopedia of Mathematics and its Applications, 114. Cambridge University Press, Cambridge, 2008, MR2402857 (2009g:91038). Given a finite set $S$ of points in the plane $\mathbb R^2$, consider the following game between two players Maker and Breaker. The players alternat […]

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

I am looking for references discussing two inequalities that come up in the study of the dynamics of Newton's method on real-valued polynomials (in one variable). The inequalities are fairly different, but it seems to make sense to ask about both of them in the same post. Most of the details below are fairly elementary, they are mostly included for comp […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Not necessarily. That $\mathfrak m$ is consistently singular is proved in MR0947850 (89m:03045) Kunen, Kenneth. Where $\mathsf{MA}$ first fails. J. Symbolic Logic 53(2), (1988), 429–433. There, Ken shows that $\mathfrak{m}$ can be singular of cofinality $\omega_1$. (Both links above are behind paywalls.)

No, the rank of a set $x$ is the least $\alpha$ such that $x\in V_{\alpha+1}$. Note that if $\alpha$ is limit, any $x\in V_\alpha$ belongs to some $V_\beta$ with $\beta

The real numbers are the usual thing. Surreal numbers are not real numbers, so no, they are not an example of non-constructible reals. Any real $r$ can be written as an infinite sequence $(n;d_1,d_2,\dots)$ where $n$ in an integer and the $d_i$ are digits. Whether the real is rational, constructible or not, is irrelevant. Any rational number, in fact, any al […]

Following Tomas's suggestion, I am posting this as an answer: I encountered this problem while directing a Master's thesis two years ago, and again (in a different setting) with another thesis last year. I seem to recall that I somehow got to this while reading slides of a talk by Paul Pollack. Anyway, I like to deduce the results asked in the prob […]

This is a beautiful and truly fundamental result, and so there are several good quality presentations. Try MR1321144. Kanamori, Akihiro. The higher infinite. Large cardinals in set theory from their beginnings. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1994. xxiv+536 pp. ISBN: 3-540-57071-3, or any of the newer editions (the 2003 second ed […]