Douglas Bruce finds himself one day riding the subway in New York without knowing where he is going. In fact, he doesn’t know where he is, he doesn’t recognize any of the buildings. Panic sets in once he realizes he doesn’t know where he took the train, or even his own name. Doug suffers total amnesia, a rare condition in which one forgets everything about one’s life. Well, this is not exactly true: He knows how to talk, and when in the hospital someone asks him to sign, he remembers his signature. This strange and fascinating condition is explored in this documentary that uses footage shot by Doug himself and directed by his (former) friend Rupert Murray.

I found the documentary quite interesting, but I also found it wanting in several respects. Part of it may be due to the simple fact that we still know very little about how memory works, so surprisingly little time is devoted to hard data, to what may be happening—as for why it is happening, nobody knows. Some hypotheses are mentioned, and as the story progresses we get some clues. But part of the problem with the story I think is due to what I perceive as a shortcoming of the director: There are questions that do not get asked, some that beg to be asked, and why they are not seems to be because everybody is so fascinated by what is happening that they assume that filming it is enough. Part of it I think is due to the friendship between Doug and Mr. Murray. Mr. Murray seems to go out of his way to make Doug feel comfortable, while obviously the subject matter may make him uncomfortable. So, at the end of the day, I find the final product a bit awkward. There are a few extras in the DVD that leave me feeling the same (at least there is consistency); I missed (being in Vienna) the controversy on the veracity of the story, so the short section addressing it didn’t mean much to me. There is a long section explaining how a sequence was shot. I found it very curious that the director put so much thought into the visual look of the final product instead of trying to add a bit more substance to it.

I like explorations of memory, and mental problems intrigue me to no end. So this was a good movie overall. It complements well other documentaries in similar subjects, like anterograde amnesia, the disease that Memento popularized. I had the fortune of watching in 2004 an excellent documentary by Koreeda Hirokazu about one such case in Japan, Without memory.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, January 25th, 2007 at 11:06 pm and is filed under Documentaries. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

I assume by $\aleph$ you mean $\mathfrak c$, the cardinality of the continuum. You can build $D$ by transfinite recursion: Well-order the continuum in type $\mathfrak c$. At stage $\alpha$ you add a point of $A_\alpha$ to your set, and one to its complement. You can always do this because at each stage fewer than $\mathfrak c$ many points have been selected. […]

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is negative. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${\mathfrak c}$ (This doesn't matter, all we need is that it is strictly larger. T […]

(As I pointed out in a comment) yes, partial Woodinness is common in arguments in inner model theory. Accordingly, you obtain determinacy results addressing specific pointclasses (typically, well beyond projective). To illustrate this, let me "randomly" highlight two examples: See here for $\Sigma^1_2$-Woodin cardinals and, more generally, the noti […]

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A simple example is the permutation $\pi$ given by $\pi(n)=n+2$ if $n$ is even, $\pi(1)=0$, and otherwise $\pi(n)=n−2$. It should be clear that $\pi$ is computable and has the desired property. By the way, regarding the footnote: if a bijection is computable, so is its inverse, so $\pi^{-1}$ is computable as well. In general, given a computable bijection $\s […]

The question is asking to find all polynomials $f$ for which you can find $a,b\in\mathbb R$ with $a\ne b$ such that the displayed identity holds. The concrete numbers $a,b$ may very well depend on $f$. A priori, it may be that for some $f$ there is only one pair for which the identity holds, it may be that for some $f$ there are many such pairs, and it may a […]

The reflection principle is a theorem schema in ZFC, meaning that for each formula $\phi(\vec x)$ we can prove in ZFC a version of the principle for $\phi$. In particular, it gives us that if $\phi$ holds (in the universe of sets) then there is some ordinal $\alpha$ such that $V_\alpha\models \phi$. It follows from this that (assuming its consistency) $\math […]

All proofs of the Bernstein-Cantor-Schroeder theorem that I know either directly or with very little work produce an explicit bijection from any given pair of injections. There is an obvious injection from $[0,1]$ to $C[0,1]$ mapping each $t$ to the function constantly equal to $t$, so the question reduces to finding an explicit injection from $C[0,1]$ to $[ […]

One way we formalize this "limitation" idea is via interpretative power. John Steel describes this approach carefully in several places, so you may want to read what he says, in particular at Solomon Feferman, Harvey M. Friedman, Penelope Maddy, and John R. Steel. Does mathematics need new axioms?, The Bulletin of Symbolic Logic, 6 (4), (2000), 401 […]