This set is due Monday, April 11. The questions in problem 2 are required from everybody, and graduate students should also work on problem 1. (Of course, it would make me happier if everybody attempts problem 1 as well.)

1. Let be a real finite-dimensional, inner product space. For , define

,

and

.

a. Prove that is a norm on the vector space . In particular, for all . Also, prove that for all b. Prove that for all . Is also a norm? c. Prove that for any there are vectors of norm 1 with and . d. Suppose now that is such that . Prove (without appealing to the fundamental theorem of algebra and without using determinants) that admits an eigenvalue (real) with eigenvector as in item c and, in fact, . e. Prove that for any , we have . f. Suppose that is self-adjoint. Check that so is and that . In particular, this gives a proof that squares of self-adjoint operators on real vector spaces admit eigenvalues that does not use the fundamental theorem of algebra. Check that the eigenvalues of are non-negative. g. Again, let be self-adjoint. (So we know there is an orthonormal basis for consisting of eigenvectors of ) Assume also that is invertible, that there is a unique eigenvalue of of largest absolute value, and that this satisfies . Let be an eigenvector of with eigenvalue and such that . Starting with a vector of norm 1 (arbitrary except for the fact that is not orthogonal to ), define a sequence of unit vectors by setting

(and note we are not dividing by 0, so these vectors are well defined). Also, define a sequence of numbers by setting

Prove that there is a sequence with each equal to 1 or and such that

and

as .

2. Solve problems 7.1, 7.3, 7.6, 7.7, 7.11, 7.14 from the book.

Note: In problem 1.f, the eigenvalues of are precisely the squares of the eigenvalues of , but at the moment I do not have a way of showing this directly. As extra-credit, show without appealing to the fundamental theorem of algebra (and without using determinants, of course) that must have a real eigenvalue.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, March 21st, 2011 at 11:06 pm and is filed under 403/503: Linear Algebra II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

(As I pointed out in a comment) yes, partial Woodinness is common in arguments in inner model theory. Accordingly, you obtain determinacy results addressing specific pointclasses (typically, well beyond projective). To illustrate this, let me "randomly" highlight two examples: See here for $\Sigma^1_2$-Woodin cardinals and, more generally, the noti […]

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

All proofs of the Bernstein-Cantor-Schroeder theorem that I know either directly or with very little work produce an explicit bijection from any given pair of injections. There is an obvious injection from $[0,1]$ to $C[0,1]$ mapping each $t$ to the function constantly equal to $t$, so the question reduces to finding an explicit injection from $C[0,1]$ to $[ […]

One way we formalize this "limitation" idea is via interpretative power. John Steel describes this approach carefully in several places, so you may want to read what he says, in particular at Solomon Feferman, Harvey M. Friedman, Penelope Maddy, and John R. Steel. Does mathematics need new axioms?, The Bulletin of Symbolic Logic, 6 (4), (2000), 401 […]

"There are" examples of discontinuous homomorphisms between Banach algebras. However, the quotes are there because the question is independent of the usual axioms of set theory. I quote from the introduction to W. Hugh Woodin, "A discontinuous homomorphism from $C(X)$ without CH", J. London Math. Soc. (2) 48 (1993), no. 2, 299-315, MR1231 […]

This is Hausdorff's formula. Recall that $\tau^\lambda$ is the cardinality of the set ${}^\lambda\tau$ of functions $f\!:\lambda\to\tau$, and that $\kappa^+$ is regular for all $\kappa$. Now, there are two possibilities: If $\alpha\ge\tau$, then $2^\alpha\le\tau^\alpha\le(2^\alpha)^\alpha=2^\alpha$, so $\tau^\alpha=2^\alpha$. In particular, if $\alpha\g […]

Fix a model $M$ of a theory for which it makes sense to talk about $\omega$ ($M$ does not need to be a model of set theory, it could even be simply an ordered set with a minimum in which every element has an immediate successor and every element other than the minimum has an immediate predecessor; in this case we could identify $\omega^M$ with $M$ itself). W […]